[1]Sutton A P, Balluffi R W. Interface in crystalline materials [M]. Oxford: Clarendon Press, 1995. [2]Wang S Q, Ye H Q. Theoretical studies of solidsolid interfaces[M]. [s.l.]: Curr Opin Solid State Mater Sci, 2006: 26. [3]Allara D L. A perspective on surfaces and interfaces [J]. Nature, 2005, 437: 638639. [4]Balluffi R W, Sutton A P. Why should we be interested in the atomic structure of interfaces [J]. Materials Science Forum, 1996, 1: 207209. [5]Brener E A, Temkin D E. Theory of diffusion induced grain boundary migration: is mass transport along free surfaces important [J]. Acta Materialia, 2002, 50: 17071716. [6]Wan L, Wang S Q. Shear response of the Σ9 symmetric tilt grain boundary in fcc metals studied by atomistic simulation methods[J]. Physical Review B, 2010, 82: 214112. [7]Mishin Y, Asta M, Li J. Atomistic modeling of interfaces and their impact on microstructure and properties [J]. Acta Materialia, 2010, 58: 11171151. [8]Liu F C, Ma Z Y. Contribution of grain boundary sliding in lowtemperature super plasticity of ultrafinegrained aluminum alloys [J]. Scripta Materialia, 2010, 62: 125128. [9]Farkas D, Frseth A, Swygenhoven H V. Grain boundary migration during room temperature deformation of nanocrystalline Ni [J]. Scripta Materialia, 2006, 55: 695698. [10]Bobylev S V, Morozov N F, Ovid’ko I A. Cooperative grain boundary sliding and migration process in nanocrystalline solids [J]. Physical Review Letters, 2010, 105: 055504. [11]Wei Y J, Bower A F, Gao H J. Enhanced strainrate sensitivity in fcc nanocrystals due to grainboundary diffusion and sliding [J]. Acta Materialia, 2008, 56: 17411752. [12]SheikhAli A D. Coupling of grain boundary sliding and migration within the range of boundary specialness[J]. Acta Materialia, 2010, 58: 62496255. [13]Mishin Y, Suzuki A, Uberuaga B P, et al. Stickslip behavior of grain boundaries studied by accelerated molecular dynamics [J]. Physical Review B, 2007, 75: 224101. [14]Ivanov V A, Mishin Y. Dynamics of grain boundary motion coupled to shear deformation: An analytical model and its verification by molecular dynamics [J]. Physical Review B, 2008, 78: 064106. [15]Koike J, Ohyama R, Kobayashi T, et al. Grainboundary sliding in AZ31 magnesium alloys at room temperature to 523 K[J]. Materials Transactions, 2003, 44(4): 445451. [16]Achter M R, Smoluchowski R. Diffusion in grain boundaries and their structure[J]. Journal of Applied Physics, 2004, 22(10): 12061218. [17]Winning M, Gottstein G, Shvindlerman L S. On the mechanisms of grain boundary migration[J]. Acta Materialia, 2002, 50(2): 353363. [18]Mohamed F A. A dislocation model for the minimum grain size obtainable by milling[J]. Acta Materialia, 2003, 51(14): 41074119. [19]De Koning M, Kurtz R J, Bulatov V V, et al. Modeling of dislocationgrain boundary interactions in FCC metals[J]. Journal of Nuclear, 2003, 323(23): 281289. [20]Merkle K L, Thompson L J, Phillipp F. Insitu HREM studies of grain boundary migration[J]. Interface Science, 2004, 12: 277292. [21]Howe J M, Gautam A R S, Chatterjee K, et al. Atomiclevel dynamic behavior of a diffuse interphase boundary in an AuCu alloy [J]. Acta Materialia, 2007, 55: 21592171. [22]Jhan R J, Bristowe P D. A molecular dynamics study of grain boundary migration without the participation of secondary grain boundary dislocations [J]. Scripta Materialia, 1990, 24: 13131318. [23]Babcock S E, Balluffi R W. Grain boundary kinetics.II. In situ observations of the role of grainboundary dislocations in highangle boundary migration [J]. Acta Materialia, 1989, 37: 23672376. [24]Rickman J M, Phillpot S R, Wolf D, et al. On the mechanism of grainboundary migration in metals: A molecular dynamics study [J]. Journal of Materials Research, 1991, 6: 22912304. [25]Schonfelder B, Gottstein G, Shvindlerman L S. Comparative study of grainboundary migration and grainboundary selfdiffusion of [001] twistgrain boundaries in copper by atomistic simulations[J]. Acta Materialia, 2005, 53: 15971069. [26]Yan X N, Zhang H. On the atomistic mechanisms of grain boundary migration in [001] twist boundaries: Molecular dynamics simulations [J]. Computational Materials Science, 2010, 48: 773782. [27]Godiksen R B, Trautt Z T, Upmanyu M, et al. Simulations of boundary migration during recrystallization using molecular dynamics [J]. Acta Materialia, 2007, 55: 63836391. [28]Zhou L, Zhou N, Song G. Collective motion of atoms in grain boundary migration of a bcc metal [J]. Philosophical Magazine A, 2006, 86: 58855895. [29]Zhang H, Srolovitz D J, Douglas J F. Characterization of atomic motion governing grain boundary migration [J]. Physical Review B, 2006, 74: 115404. [30]Wan L, Wang S Q. Shear response of the Σ11, [110]{131} symmetric tilt grain boundary studied by molecular dynamics [J]. Modelling and Simulation in Materials Science and Engineering, 2009, 17: 045008. [31]Bishop G H, Harrison R J, Kwok T. Observations of coupled sliding and migration in a 3dimensional simulation [J]. Journal of Applied Physics, 1982, 53: 55965608. [32]Shiga M, Shinoda W. Stressassisted grain boundary sliding and migration at finite temperature: A molecular dynamics study [J]. Physical Review B, 2004, 70: 054102. [33]Cahn J W, Mishin Y. Coupling grain boundary motion to shear deformation [J]. Acta Materialia, 2006, 54: 49534975. |