[1]Cogan S F. Neural stimulation and recording electrodes[J]. Annu Rev Biomed Eng, 2008, 10: 275 309. [2]Wise K D. Wireless integrated microsystems: Wearable and implantable devices for improved health care[C]//Proc Int SolidState Sens, Actuat, Microsyst Conf, IEEE Transducers. Denver CO: IEEE, 2009: 18. [3]Keserue M, Post N, Hornig R, et al. Long term tolerability of the first wireless implant for electrical epiretinal stimulation[J]. ARVO Meeting Abstracts, 2009, 50: 4226. [4]刘炳辛,鲁艺,王定芳. 植入式铂铱合金微电极的修饰和植入大鼠大脑运动皮层后的阻抗测量[J]. 武汉大学学报:理学版, 2009, 55(3):253257. LIU Bingxi, LU Yi, WANG Dingfang. Modification of implantable Pt2Ir alloy microelectrode and impedance monitoring in vivo[J]. J Wuhan Univ: Nat Sci Ed, 2009, 55(3): 253257. [5]Cogan S F, Troyk P R, Ehrlich J, et al. The influence of electrolyte composition on the in vitro chargeinjection limits of activated iridium oxide (AIROF) stimulation electrodes[J]. Journal of Neural Engineering, 2007, 4(2): 7986. [6]Green R A, Lovell N H, Wallace G G, et al. Conducting polymers for neural interfaces: Challenges in developing an effective longterm implant[J]. Biomaterials, 2008, 29(2425): 33933399. [7]Keserü M, Feucht M, Bornfeld N, et al. Acute electrical stimulation of the human retina with an epiretinal electrode array[J]. Acta Ophthalmologica, 2012, 90(1): e1e8. [8]Logothetis N K, Augath M, Murayama Y, et al. The effects of electrical microstimulation on cortical signal propagation[J]. Nat Neurosci, 2010, 13(10): 12831291. [9]张华,朱壮晖,吴蕾. 导电聚合物修饰的柔性神经微电极的制备与界面性质[J]. 功能材料与器件学报, 2010, 16(5): 457466. ZHANG Hua, ZHU Zhuanghui, WU Lei. Integration of conducting polymer with flexible thin coating micro electrode arrays for improved neural interfaces[J]. Journal of Functionalmater Ials And Devices, 2010, 16(5): 457466. [10]Biran R, Martin D C, Tresco P A. The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull[J]. Journal of Biomedical Materials Research Part A, 2007, 82A(1): 169178. [11]McConnell G C, Rees H D, Levey A I, et al. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration[J]. Journal of Neural Engineering, 2009, 6(5): 12. [12]Kim D H, RichardsonBurns S M, Hendricks J L, et al. Effect of immobilized nerve growth factor on conductive polymers: Electrical properties and cellular response[J]. Adv Funct Mater, 2007, 17(1): 7986. [13]Long Y Z, Li M M, Gu C, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers[J]. Progress in Polymer Science, 2011, 36(10): 14151442. [14]Xie D, Jiang Y D, Pan W, et al. Fabrication and characterization of polyanilinebased gas sensor by ultrathin film technology[J]. Sens Actuators B, 2002,81(23): 158164. [15]Abidian M R, Corey J M, Kipke D R, et al. ConductingPolymer nanotubes improve electrical properties, mechanical adhesion[J]. Small, 2010, 6(3): 421429. [16]Abidian M R, Martin D C. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes[J]. Biomaterials, 2008, 29(9): 12731283. [17]Di L, Wang L P, Lu Y N, et al. Protein adsorption and peroxidation of rat retinas under stimulation of a neural probe coated with polyaniline[J]. Acta Biomaterialia, 2011, 7(10): 37383745. [18]Wang H J, Ji L W, Li D F, et al. Characterization of nanostructure and cell compatibility of polyaniline films with different dopant acids[J]. J Phys Chem B, 2008, 112: 26712677. [19]丁克强,冬连红,马子川. 循环伏安方法制备掺杂二价金属离子的MnO2[J]. 应用化学, 2008, 25(4): 429432. DING Keqiang, DONG Lianhong, MA Zichuan. Electrodeposition of metal ion(Ⅱ)doped MnO2 by means of cyclic voltammetry[J]. Chinese Journal of Applied Chemistry, 2008, 26(4): 429432. [20]生瑜, 陈建定, 朱德钦. 导电聚苯胺二氧化锰复合材料原位化学合成制备及表征[J]. 复合材料学报, 2004, 21(4): 17. SHENG Yu, CHEN Jianding, ZHU Deqin. Insitu chemical synthesis and characterization of conducting polyaniline/ manganese dioxide composites[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 17. |