上海交通大学学报(自然版) ›› 2012, Vol. 46 ›› Issue (10): 1686-1692.

• 数理科学和化学 • 上一篇    下一篇

针对基于广义逆的特大增量步算法的二维拓展

龙丹冰a,刘西拉b   

  1. (上海交通大学a. 固体力学系; b. 土木工程系,上海 200240)
  • 收稿日期:2011-10-08 出版日期:2012-10-30 发布日期:2012-10-30
  • 基金资助:

    国家自然科学基金资助项目(10872128)

Application in 2D Solid Analysis of General Inverse Matrix-Based Large Increment Method

 LONG  Dan-Bing-a, LIU  Xi-La-b   

  1. (a.Department of Solid Mechanics; b.Department of Civil Engineering,Shanghai Jiaotong University, Shanghai 200240, China)
  • Received:2011-10-08 Online:2012-10-30 Published:2012-10-30

摘要: 为将特大增量步算法推广应用到二维实体分析上,提出了一种能适应特大增量步算法求解的二维4节点四边形单元.应用新单元的数值算例的结果表明,该单元在算法上收敛,对单元畸变不敏感,能用于特大增量步算法并可以利用在杆件结构系统类似的方法发挥并行计算的优势.    

关键词: 广义逆力法, 特大增量步算法, 有限元, 四边形单元

Abstract: To extend the application of large increment method (LIM) into 2D solid analyses, a 4-node quadrilateral element which adapts to LIM was proposed. Two numerical examples were solved  using the new element. The mesh convergence and the insensitiveness to the mesh distortion are proved, and the advantage of parallel computation is implied.  

Key words: general inverse force method, large increment method, finite element method, quadrilateral element

中图分类号: