上海交通大学学报(自然版) ›› 2012, Vol. 46 ›› Issue (03): 358-362.

• 交通运输 • 上一篇    下一篇

基于支持向量机的水下运载器平面操纵运动建模

 徐锋a, 邹早建a, b, 宋鑫a   

  1. (上海交通大学a. 船舶海洋与建筑工程学院; b. 海洋工程国家重点实验室,上海 200240)
  • 收稿日期:2010-11-30 出版日期:2012-03-30 发布日期:2012-03-30
  • 基金资助:

    国家自然科学基金资助项目(50979060, 51079031)

Modeling of Underwater Vehicles’ Planar Maneuvering Motion Based on Support Vector Machines

 XU  Feng-a, ZOU  Zao-Jian-a, b , SONG  Xin-a   

  1. (a. School of Naval Architecture, Ocean and Civil Engineering; b. State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China)
  • Received:2010-11-30 Online:2012-03-30 Published:2012-03-30

摘要: 应用卡尔曼滤波器对水下运载器操纵运动仿真试验数据进行预处理,应用最小二乘支持向量机(LSSVM)对水下运载器的平面操纵运动方程进行参数辨识,并与传统的最小二乘法(LSM)的结果进行比较,验证了LSSVM应用于水下运载器操纵运动建模的有效性.      

关键词: 卡尔曼滤波, 水下运载器, 支持向量机, 参数辨识

Abstract: At first, Kalman filter was adopted for data preprocessing of underwater vehicle’s simulation test. Then, least square support vector machines was applied to identifying the coefficients in the equations of planar maneuvering motion of underwater vehicles. The identification results were compared with those by using traditional least square method. It proves that the least square support vector machines is more effective.

Key words: Kalman filter, underwater vehicle, support vector machines, parameter identification

中图分类号: