上海交通大学学报(自然版) ›› 2011, Vol. 45 ›› Issue (06): 798-803.
汪建强1,2,高华2,张剑2,张松1,李晨1,叶庆好1,孟凡英1
出版日期:
2011-06-29
发布日期:
2011-06-29
基金资助:
上海市科学技术委员会和应用材料国际科技合作基金(08520741400);上海市科学技术委员会优秀学科带头人基金(08XD14022)
WANG Jian-Qiang-1, 2 , GAO Hua-2, ZHANG Jian-2, ZHANG Song-1, LI Chen-1, YE Qing-Hao-1, MENG Fan-Ying-1
Online:
2011-06-29
Published:
2011-06-29
摘要: 通过对非晶硅/晶体硅(a-Si/c-Si)异质结能带不连续、发射结掺杂以及界面态密度进行分析,研究它们对a-Si/c-Si异质结的界面特性,以及a-Si(N+)/c-Si(P)结构电池性能的影响.研究发现,能带不连续以及a-Si发射结高掺杂有利于实现界面复合机制由以悬挂键复合主导的复合机制向由少数载流子复合占主导的SRH(ShocklyRead-Hall)复合机制转变,有效降低界面复合速率.AFORS-HET软件模拟显示:在c-Si(P)衬底掺杂浓度为1.6×1016 cm-3时,a-Si(N+)发射结掺杂浓度大于1.5×1020 cm-3是获得高电池效率的必要条件;与短路电流密度相比,开路电压受a-Si/c-Si界面态密度影响更明显.
中图分类号:
汪建强1, 2, 高华2, 张剑2, 张松1, 李晨1, 叶庆好1, 孟凡英1. 非晶硅/晶体硅(a-Si/c-Si)异质结[J]. 上海交通大学学报(自然版), 2011, 45(06): 798-803.
WANG Jian-Qiang-1, 2 , GAO Hua-2, ZHANG Jian-2, ZHANG Song-1, LI Chen-1, YE Qing-Hao-1, MENG Fan-Ying-1. Property Investigation of a-Si/c-Si Hetero-Junction Structure[J]. Journal of Shanghai Jiaotong University, 2011, 45(06): 798-803.
[1]Pankove J I,Tarng M L. Amorphous silicon as a passivation for crystalline silicon[J].Appl Phys Lett,1979, 34(2): 156157.[2]Kerr M J, Cuevas A. Very low bulk and surface recombination in oxidized silicon wafers[J]. Semiconductor Science and Technology,2002, 17(1): 3538.[3]Yablonovitch E, Swanson R M, Eades W D, et al. Electronhole recombination at the SiSiO2 interface[J]. Appl Phys Lett,1986, 48(3): 245247.[4]Glunz S W, Biro D, Rein S, et al. Fieldeffect passivation of the SiO2Si interface[J].J App Phys, 1999,86(1): 683691.[5]Aberle A G, Glunz S, Warta W. Impact of illumination level and oxide parameters on ShockleyReadHall recombination at the Si/SiO2 interface[J].J App Phys,1992, 71(2): 44224431.[6]Aberle A G. Crystalline silicon solar cells: Advanced surface passivation and analysis[M]. Sydney: Bridge Printery, 1999.[7]Hezel R, Schorner R, Meisel T. Application of amorphous silicon nitride for MIS/inversion layer solar cells[C]//Proc 3rd EPVSEC. Cannes:[s.n.], 1980: 866870.[8]Hezel R, Schorner R. Plasma Si nitride——A promising dielectric to achieve highquality silicon MIS/IL solar cells[J]. J App Phys, 1981,52(4):30763079.[9]Biegelsen D K, Johnson N M, Stutzmann M, et al. Native defects at the Si/SiO2 interfaceamorphous silicon revisited[J]. Applications of Surface Science,1985, 22/23: 879890.[10]Zhao L. Design optimization of bifacial HIT solar cells on ptype silicon substrates by simulation[J].Solar Energy Materials & Solar Cells,2008,92: 673681.[11]May S G, Sze S M. Fundamentals of semiconductor fabrication[M].New York:John Wiley & Sons, 2003.[12]Hubin J, Shah A V, Sauvain E. Effects of dangling bonds on the recombination function in amorphous semiconductors[J].Philosophical Magazine Letters,1992, 66(3): 115125.[13]Yablonovitch E, Gmitter T. Auger recombination in silicon at low carrier densities[J]. Appl Phys Lett,1986, 49(10): 587589.[14]Razouk R R, Deal B E. Dependence of interface state density on silicon thermal oxidation process variables[J].Journal of the Electrochemical Society, 1979,126(9): 15731581.[15]Schuurmans F M, Schonecker A, Eikelboom J A, et al. Crystalorientation dependence of surface recombination velocity for silicon nitride passivated silicon wafers[C]//Proc 25th IEEE PVSEC.Washington DC, USA: IEEE, 1996: 485488.[16]DeWolf S, Beaucarne G.Surface passivation properties of borondoped plasmaenhanced chemical vapor deposited hydrogenated amorphous silicon films on ptype crystalline Si substrates[J]. Appl Phys Lett, 2006, 88: 022104.[17]Garin M, Rau U, Brendle W, et al. Characterization of aSi:H/cSi interfaces by effectivelifetime measurements[J]. J App Phys, 2005, 98: 093711.[18]Anderson R L. Experiments on GeGaAs heterojunctions[J]. SolidState Electronics,1962, 5: 341351.[19]Kleider J P, Gudovskikh A S, Cabarrocas P R. Determination of the conduction band offset between hydrogenated amorphous silicon and crystalline silicon from surface inversion layer conductance measurements[J].Appl Phys Lett, 2008, 92: 162101.[20]Van de Walle C G, Yang L H. Band discontinuities at heterojunctions between crystalline and amorphous silicon[J]. J Vac Sci Technol, 1995, B13: 16351638. |
[1] | 王聚团, 戚晓宁, 黄志明. 水下生产管汇测试技术及其改进研究[J]. 海洋工程装备与技术, 2022, 9(2): 43-49. |
[2] | 袁振钦, 邹 科, 孙亚峰, 刘 刚, 屈 衍, 李居跃. 基于时域分析法的动态电缆疲劳分析[J]. 海洋工程装备与技术, 2022, 9(2): 50-55. |
[3] | 王 娟, 杨明旺, 郑茂尧, 刘凌云, 赵立君. 高强钢在大型半潜式平台组块建造中的应用[J]. 海洋工程装备与技术, 2022, 9(1): 27-31. |
[4] | 陈 欣, 赵晓磊, 王立坤, 肖德明, 张腾月. 深水大型吸力锚建造技术研究[J]. 海洋工程装备与技术, 2022, 9(1): 32-36. |
[5] | 尹彦坤, 易涤非. 半潜式生产平台船体结构关键节点工程临界评估[J]. 海洋工程装备与技术, 2022, 9(1): 52-57. |
[6] | MA Qunsheng (马群圣), CEN Xingxing (岑星星), YUAN Junyi (袁骏毅), HOU Xumin (侯旭敏). Word Embedding Bootstrapped Deep Active Learning Method to Information Extraction on Chinese Electronic Medical Record[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 494-502. |
[7] | ZHANG Shengfa (张胜发), TANG Na (唐纳), SHEN Guofeng (沈国峰), WANG Han (王悍), QIAO Shan (乔杉). Universal Software Architecture of Magnetic Resonance-Guided Focused Ultrasound Surgery System and Experimental Study[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(4): 471-481. |
[8] | 安庆升, 孙立东, 武秋生. 碳纤维增强复合材料发射筒设计研究[J]. 空天防御, 2021, 4(2): 13-. |
[9] | KONG Xiangqiang (孔祥强), MENG Xiangxi (孟祥熙), LI Jianbo (李见波), SHANG Yanping (尚燕平), CUI Fulin (崔福林) . Comparative Study on Two-Stage Absorption Refrigeration Systems with Different Working Pairs[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 155-162. |
[10] | ZHUANG Weimin (庄蔚敏), WANG Pengyue (王鹏跃), AO Wenhong (熬文宏), CHEN Gang (陈刚) . Experiment and Simulation of Impact Response of Woven CFRP Laminates with Different Stacking Angles[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(2): 218-230. |
[11] | ZHOU Xuhui (周旭辉), ZHANG Wenguang (张文光), XIE Jie (谢颉). Effects of Micro-Milling and Laser Engraving on Processing Quality and Implantation Mechanics of PEG-Dexamethasone Coated Neural Probe[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 1-9. |
[12] | HUANG Ningning (黄宁宁), MA Yixin (马艺馨), ZHANG Mingzhu (张明珠), GE Hao (葛浩), WU Huawei (吴华伟). Finite Element Modeling of Human Thorax Based on MRI Images for EIT Image Reconstruction[J]. J Shanghai Jiaotong Univ Sci, 2021, 26(1): 33-39. |
[13] | WANG Xianjin, GAO Xu, YU Kuigang . Fixture Locating Modelling and Optimization Research of Aluminum Alloy Sidewall in a High-Speed Train Body[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 706-713. |
[14] | QIAO Xing, MA Dan, YAO Xuliang, FENG Baolin. Stability and Numerical Analysis of a Standby System[J]. J Shanghai Jiaotong Univ Sci, 2020, 25(6): 769-778. |
[15] | WU Jin, MIN Yu, YANG Xiaodie, MA Simin . Micro-Expression Recognition Algorithm Based on Information Entropy Feature[J]. Journal of Shanghai Jiao Tong University(Science), 2020, 25(5): 589-599. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||