[1]Monsees G. Discretetime sliding mode control [D]. Delft, Holland: de Technische Universiteit Delft, 2002.[2]Anass B, Gilles M, Jose R. Nonlinear dynamic system identification: a multimodel approach[J]. International Journal of Control, 1999, 72(7/8): 591604.[3]Palm R, Driankov D. Fuzzy switched hybrid systemsmodeling and Identification[C]//Proceedings of the 1998 IEEE ISIC/CIRA/ISAS Joint Conference. Gaithersburg: IEEE, 1998: 130135.[4]Roll J. Local and piecewise affine approaches to system identification[D]. Sweden: Department of Electrical Engineering, Linkping University, 2003.[5]Kukolj D. Design of adaptive takagisugenokang fuzzy models[J]. Applied Soft Computing, 2002(2): 89103.[6]Cherkassky V, Ma Y Q. Multiple model regression estimation[J]. IEEE Transactions on Neural Networks, 2005, 16(4): 785798.[7]Angelov P. An approach for fuzzy rulebase adaptation using online clustering[J]. International Journal of Approximate Reasoning, 2004, 35: 275289.[8]Xi Y G, Wang F. Nonlinear multimodel predictive control [J]. Acta Automatica Sinica, 1996, 22(4): 456461.[9]邹涛, 王晰, 李少远. 基于混合逻辑的非线性系统多模型预测控制[J]. 自动化学报. 2007, 33(2): 188192.ZOU Tao, WANG Xi, LI Shaoyuan. Nonlinear multimodel predictive control based on combining logical[J]. Journal of Automatic. 2007, 33(2): 188192.[10]Yen J, Wang L, Gillespie C W. Improving the interpretability of TSK fuzzy models by combining global learning and local learning [J]. IEEE Transactions on Fuzzy Systems, 1998, 6(4): 530537.[11]Gao W B, Wang Y F, Homaifa A. Discretetime variable structure control systems[J]. IEEE Transactions on Industrial Electronics, 1995, 42(2): 117122.[12]Narendra K S, Parthasarathy K. Identification and control of dynamical systems using neural networks[J]. IEEE Transactions on Neural Networks, 1990(1): 427. |