上海交通大学学报(自然版)

• 数学 • 上一篇    下一篇

带第二声速的变系数热弹性力学方程组间断解的性态

李铮,王亚光   

  1. (上海交通大学 数学系, 上海 200240)
  • 收稿日期:2009-06-10 修回日期:1900-01-01 出版日期:2010-06-30 发布日期:2010-06-30

Asymptotic Behavior of Discontinuities in Thermoelasticity with Second Sound and Variable Coeffcients

LI Zheng,WANG Yaguang   

  1. (Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China)
  • Received:2009-06-10 Revised:1900-01-01 Online:2010-06-30 Published:2010-06-30

摘要: 主要研究一维空间变量的带第二声速的变系数线性及半线性热弹性力学方程Cauchy问题间断解的渐近性态.当松弛系数趋于零时,得到弹性体温度的间断将消失,弹性波和热流量的间断将以弹性波的速度传播;这些间断随时间增长呈指数衰减,且衰减率与非线性项的增长率、热传导系数、弹性波速度的变化率有关.

关键词: 双曲, 热弹性力学方程组, 线性和半线性, Cauchy问题, 变系数, 渐近性态

Abstract: This paper mainly studyied the asymptotic behavior of discontinuous solutions to the Cauchy problems for linear and semilinear thermoelastic equations with second sound and variable coefficients in one space variable. When the relaxation parameter goes to zero, the discontinuity of temperature vanishes, and discontinuities of elastic waves and heat flux are propagated with the elastic speeds. Moreover, these discontinuities decay exponentially when the time goes to infinity, and the decay rates not only depend on the growth rate of the nonlinear source terms and the heat conduction coefficient, but also depend on the change rates of the elastic speeds.

中图分类号: