上海交通大学学报 ›› 2024, Vol. 58 ›› Issue (7): 983-994.doi: 10.16183/j.cnki.jsjtu.2023.019
收稿日期:
2023-01-16
修回日期:
2023-03-07
接受日期:
2023-03-14
出版日期:
2024-07-28
发布日期:
2024-07-26
通讯作者:
张 颖,副教授;E-mail:sara.zhangying@gdut.edu.cn.
作者简介:
曾伟杰(1997-),硕士生,从事海上风力机减振减载研究.
基金资助:
ZENG Weijie1, ZHANG Ying2(), DENG Yanfei3, GUO Chuanrui1, REN Weixin1
Received:
2023-01-16
Revised:
2023-03-07
Accepted:
2023-03-14
Online:
2024-07-28
Published:
2024-07-26
摘要:
与固定式海上风力机相比,漂浮式海上风力机的振动问题更为突出,进一步控制漂浮式海上风力机的振动成为了工程难题.针对此问题,探索了惯容调谐质量阻尼器(惯容-TMD,即IBA)系统对半潜式海上风力机的振动抑制效果,并提出一种基于结构阻抗的惯容-TMD综合优化设计方法,从整个设计空间出发保证惯容-TMD的最优性.为寻求最优的减振效果,基于达朗贝尔原理建立风力机-惯容-TMD动力学模型,采用双IBA的控制策略同时对半潜式海上风力机浮台和塔筒的振动响应进行抑制,并从增益效果角度,比较了双IBA与双TMD的减振性能.最后对OpenFAST软件进行二次开发,数值验证了风浪联合作用下双IBA相对于双TMD减振性能的提升.结果表明:双减振装置的减振性能相较于单个减振装置有明显提升,且双IBA振动控制效果要优于双TMD;此外,基于惯容器质量增益效果,在达到最优TMD相同减振效果的情况下,机舱惯容-TMD (NIBA)和浮台惯容-TMD (PIBA)分别可将结构减振器中质量元件的质量减少23.9%和32.2%,大幅降低装置成本.
中图分类号:
曾伟杰, 张颖, 邓燕飞, 郭川睿, 任伟新. 基于双惯容调谐质量系统的半潜式海上风力机振动控制[J]. 上海交通大学学报, 2024, 58(7): 983-994.
ZENG Weijie, ZHANG Ying, DENG Yanfei, GUO Chuanrui, REN Weixin. Vibration Control of Semi-Submersible Offshore Wind Turbines Using Inerter-Based Absorbers[J]. Journal of Shanghai Jiao Tong University, 2024, 58(7): 983-994.
表4
TMD参数优化结果
类别 | m/t | k/ (kN·m-1) | c/[(kN· (m·s-1)-1] | J1 | J1提升 比例/% | J2 | J2提升 比例/% | ||
---|---|---|---|---|---|---|---|---|---|
无TMD | 有TMD | 无TMD | 有TMD | ||||||
NTMD | 20 | 135 116 | 10 578 | 0.470 | 0.191 | 59.6 | 8.730 | 8.775 | -0.5 |
20 | 1 150 | 1 074 | 0.470 | 0.455 | 3.20 | 8.730 | 3.919 | 55.1 | |
PTMD | 200 | 1 434 100 | 8 899 | 0.470 | 0.411 | 12.8 | 8.730 | 8.656 | 0.8 |
200 | 12 100 | 17 900 | 0.470 | 0.465 | 1.10 | 8.730 | 2.772 | 68.0 | |
2TMD | 20 | 139 200 | 13 700 | 0.470 | 0.187 | 60.2 | 8.730 | 2.702 | 69.1 |
200 | 11 200 | 18 300 |
表7
风力机塔基弯矩标准差和最大值
工况 | 塔底前后弯矩最大值/(kN·m) | 塔底侧向弯矩最大值/(kN·m) | 塔底前后弯矩标准差/(kN·m) | 塔底侧向弯矩标准差/(kN·m) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
无控 | 2TMD | 2IBA | 无控 | 2TMD | 2IBA | 无控 | 2TMD | 2IBA | 无控 | 2TMD | 2IBA | ||||
1 | 70 679 | 65 273 | 64 648 | 13 787 | 8 021 | 7 844 | 10 993 | 9 144 | 8 920 | 3 088 | 1 395 | 1 254 | |||
2 | 99 725 | 101 712 | 101 037 | 13 228 | 12 572 | 12 789 | 12 155 | 12 273 | 12 289 | 2 068 | 1 741 | 1 745 | |||
3 | 88 950 | 94 178 | 94 132 | 16 771 | 14 967 | 14 945 | 12 986 | 13 124 | 13 130 | 2 403 | 2 101 | 2 100 | |||
4 | 87 679 | 93 941 | 93 018 | 21 057 | 18 120 | 18 043 | 13 831 | 14 052 | 14 046 | 3 483 | 2 834 | 2 808 | |||
5 | 114 155 | 115 743 | 113 147 | 53 659 | 43 393 | 41 439 | 20 293 | 20 196 | 20 123 | 12 926 | 9 613 | 9 427 |
表8
极端工况(工况5)分析
分析类型 | 参数 | 无TMD/IBA | 2TMD (抑制率) | 2IBA (抑制率) | ||
---|---|---|---|---|---|---|
时域分析 | 塔顶前后变形位移最大值/m | 0.596 9 | 0.610 3 | (-2.24%) | 0.594 1 | (0.47%) |
塔顶侧向变形位移最大值/m | 0.294 8 | 0.245 8 | (16.62%) | 0.235 3 | (20.18%) | |
塔底前后弯矩最大值/(kN·m) | 114 155 | 115 743 | (-1.39%) | 113 147 | (0.88%) | |
塔底侧向弯矩最大值/(kN·m) | 53 660 | 43 394 | (19.13%) | 41 439 | (22.77%) | |
频域分析 (0.4~0.6 Hz) | 塔顶前后变形位移功率谱密度/(dB·Hz-1) | 0.053 62 | 0.010 96 | (79.56%) | 0.009 112 | (83.01%) |
塔顶侧向变形位移功率谱密度/(dB·Hz-1) | 0.059 61 | 0.014 33 | (75.96%) | 0.011 73 | (80.32%) | |
塔底前后弯矩功率谱密度/(dB·Hz-1) | 1.798×109 | 3.766×108 | (79.05%) | 3.081×108 | (82.86%) | |
塔底侧向弯矩功率谱密度/(dB·Hz-1) | 2.043×109 | 4.897×108 | (76.03%) | 4.028×108 | (80.28%) |
[1] | WILLIAMS R, LEE J, ZHAO F. Global offshore wind report 2022[R]. Brussels, Belgium: GWEC, 2022. |
[2] | WILLIAMS R, LEE J, ZHAO F. Global offshore wind report 2021[R]. Brussels, Belgium: GWEC, 2021. |
[3] | LACKNER M A, ROTEA M A. Structural control of floating wind turbines[J]. Mechatronics, 2011, 21(4): 704-719. |
[4] | STEWART G, LACKNER M. Offshore wind turbine load reduction employing optimal passive tuned mass damping systems[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1090-1104. |
[5] | SI Y, KARIMI H R, GAO H. Modelling and optimization of a passive structural control design for a spar-type floating wind turbine[J]. Engineering Structures, 2014, 69: 168-182. |
[6] | 贺尔铭, 胡亚琪, 张扬. 基于TMD的海上浮动风力机结构振动控制研究[J]. 西北工业大学学报, 2014, 32(1): 55-61. |
HE Erming, HU Yaqi, ZHANG Yang. Structural vibration control of offshore floating wind turbine based on TMD[J]. Journal of Northwestern Polytechnical University, 2014, 32(1): 55-61. | |
[7] | 杨佳佳, 贺尔铭, 胡亚琪. 浮动平台内TMD对Barge式海上浮动风机的振动控制研究[J]. 西北工业大学学报, 2018, 36(2): 238-245. |
YANG Jiajia, HE Erming, HU Yaqi. Vibration mitigation of the barge-type offshore wind turbine with a tuned mass damper on floating platform[J]. Journal of Northwestern Polytechnical University, 2018, 36(2): 238-245 | |
[8] | 杨佳佳, 贺尔铭, 姚文旭, 等. 抑制海上浮式风力机振动的TMD限位策略研究[J]. 振动与冲击, 2020, 39(15): 18-24. |
YANG Jiajia, HE Erming, YAO Wenxu, et al. TMD limited position strategy for vibration suppression of floating offshore wind turbines[J]. Journal of Vibration and Shock, 2020, 39(15): 18-24. | |
[9] | YANG J J, HE E M. Coupled modeling and structural vibration control for floating offshore wind turbine[J]. Renewable Energy, 2020, 157: 678-694. |
[10] | GUIMARAES P V B, DE MORAIS M V G, AVILA S M. Tuned mass damper inverted pendulum to reduce offshore wind turbine vibrations[M]//Vibration engineering and technology of machinery. Cham, Switzerland: Springer International Publishing, 2015: 379-388. |
[11] | LI C, ZHUANG T, ZHOU S, et al. Passive vibration control of a semi-submersible floating offshore wind turbine[J]. Applied Sciences, 2017, 7(6): 509-528. |
[12] | ZHANG Z, HØEG C. Dynamics and control of spar-type floating offshore wind turbines with tuned liquid column dampers[J]. Structural Control and Health Monitoring, 2020, 27(6): e2532-e2557. |
[13] | WEI X, ZHAO X. Vibration suppression of a floating hydrostatic wind turbine model using bidirectional tuned liquid column mass damper[J]. Wind Energy, 2020, 23(10): 1887-1904. |
[14] | CHEN M, PAPAGEORGIOU C, SCHEIBE F, et al. The missing mechanical circuit element[J]. IEEE Circuits and Systems Magazine, 2009, 9(1): 10-26. |
[15] | CHEN M Z, HU Y, HUANG L, et al. Influence of inerter on natural frequencies of vibration systems[J]. Journal of Sound and Vibration, 2014, 333(7): 1874-1887. |
[16] | HU Y, CHEN M Z. Performance evaluation for inerter-based dynamic vibration absorbers[J]. International Journal of Mechanical Sciences, 2015, 99: 297-307. |
[17] | 莊初立, 五十子幸树, 张永山. 极端地震下惯容器-弹簧-阻尼装置对隔震结构减震效果研究[J]. 振动与冲击, 2019, 38(12): 112-117. |
CHONG Cholap, KOHJU Ikago, ZHANG Yong-shan. Effectiveness of an inerter-spring-damper device in the seismic response control of an isolated structure under extreme earthquakes[J]. Journal of Vibration and Shock, 2019, 38(12): 112-117. | |
[18] | ZHANG Z, HØEG C. Inerter-enhanced tuned mass damper for vibration damping of floating offshore wind turbines[J]. Ocean Engineering, 2021, 223: 108663. |
[19] | LI Y Y, PARK S, JIANG J Z, et al. Vibration suppression for monopile and spar-buoy offshore wind turbines using the structure—Immittance approach[J]. Wind Energy, 2020, 23(10): 1966-1985. |
[20] | ROBERTSON A, JONKMAN J, MASCIOLA M, et al. Definition of the semisubmersible floating system for phase II of OC4[R]. Golden, USA: National Renewable Energy Laboratory, 2014. |
[21] | JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW reference wind turbine for offshore system development[R]. Colorado, USA: National Renewable Energy Laboratory, 2009. |
[22] | HU Y L, WANG J N, CHEN M Z Q, et al. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control[J]. Engineering Structures, 2018, 177: 198-209. |
[23] | ZHANG S Y, JIANG J Z, NEILD S A. Passive vibration control: A structure-immittance approach[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 2017, 473(2201): 20170011. |
[24] | ZHANG S Y, JIANG J Z, NEILD S. Optimal configurations for a linear vibration suppression device in a multi-storey building[J]. Structural Control and Health Monitoring, 2017, 24(3): e1887-e1904. |
[25] | STEWART G M. Load reduction of floating wind turbines using tuned mass dampers[D]. USA: University of Massachusetts Amherst, 2012. |
[26] | LA CAVA W, LACKNER M. Theory manual for the tuned mass damper module in FAST v8[R]. USA: University of Massachusetts Amherst, 2015. |
[27] | TC 88. Wind energy generation systems — Part 1. Design requirements: IEC 61400-1[S]. Geneva, Switzerland: International Electrotechnical Commission, 2019. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||