上海交通大学学报 ›› 2023, Vol. 57 ›› Issue (1): 116-126.doi: 10.16183/j.cnki.jsjtu.2021.235
所属专题: 《上海交通大学学报》2023年“机械与动力工程”专题
• 机械与动力工程 • 上一篇
收稿日期:
2021-07-01
修回日期:
2021-08-17
出版日期:
2023-01-28
发布日期:
2023-01-13
作者简介:
钱 虹(1967-),教授,研究方向为电厂智能控制、故障诊断等内容.电话(Tel.):021-35303284;E-mail:基金资助:
Received:
2021-07-01
Revised:
2021-08-17
Online:
2023-01-28
Published:
2023-01-13
摘要:
针对蒸汽发生器液位控制系统在压水堆核电站中维护电厂安全和高效运行的重要地位,而蒸汽发生器液位被控对象在不同负荷段及变动工况下呈现出的非线性特性,提出一种具有变论域自适应功能的模糊控制算法,在一般模糊控制算法基础上,通过非线性系统模型构造Lyapunov函数,基于理想控制律求解最优自适应伸缩因子,并利用Lyapunov定理证明了该控制系统的稳定性.仿真结果表明,相较于传统比例-积分(PI)控制与模糊PI控制,具有变论域自适应功能的模糊控制能够更好地对不同工况段和变工况下蒸汽发生器的液位进行有效控制,解决了控制器超限的问题,且系统具有更好的鲁棒性.
中图分类号:
钱虹, 邹明耀. 变论域自适应模糊非线性控制在蒸汽发生器液位控制中的应用[J]. 上海交通大学学报, 2023, 57(1): 116-126.
QIAN Hong, ZOU Mingyao. Application of Adaptive Fuzzy Nonlinear Control with Variable Universe in Liquid Level Control of Steam Generator[J]. Journal of Shanghai Jiao Tong University, 2023, 57(1): 116-126.
表1
ΔKp, ΔKi模糊规则表
ec | ΔKp/ΔKi | ||||||
---|---|---|---|---|---|---|---|
e(NB) | e(NN) | e(NS) | e(ZO) | e(PS) | e(PM) | e(PB) | |
NB | PB/NB | PB/NB | PM/NM | ZO/NM | PS/NS | ZO/ZO | ZO/ZO |
NM | PB/NB | PB/NB | PM/NM | ZO/NS | PS/NS | ZO/ZO | NS/ZO |
NS | PM/NB | PM/NM | PM/NS | PS/NS | ZO/ZO | NS/PS | NS/PS |
ZO | PM/NM | PM/NM | PS/NS | ZO/ZO | NS/PS | NM/PM | NM/PM |
PS | PS/NM | PS/NS | ZO/ZO | NS/PS | NS/PS | NM/PM | NM/PB |
PM | PS/ZO | ZO/ZO | NS/PS | ZO/PS | NM/PM | NM/PB | NB/PB |
PB | ZO/ZO | ZO/ZO | NM/PS | ZO/PM | NM/PM | NB/PB | NB/PB |
[1] | XUE Y, FENG J, YANG X Y. Steam generator water level SMC-ADRC cascade control based on improved power reaching law[C]//IEEE International Conference on System Science & Engineering. Shanghai, China: IEEE, 2014: 114-118. |
[2] |
WEN T. Water level control for a nuclear steam generator[J]. Nuclear Engineering and Design, 2011, 241(5): 1873-1880.
doi: 10.1016/j.nucengdes.2010.12.010 URL |
[3] |
ZHE D, HUANG X J, FENG J T. Water-level control for the U-tube steam generator of nuclear power plants based on output feedback dissipation[J]. IEEE Transactions on Nuclear Science, 2009, 56(3): 1600-1612.
doi: 10.1109/TNS.2009.2019593 URL |
[4] |
SALEHI A, SAFARZADEH O, KAZEMI M H. Fractional order PID control of steam generator water level for nuclear steam supply systems[J]. Nuclear Engineering and Design, 2019, 342: 45-59.
doi: 10.1016/j.nucengdes.2018.11.040 URL |
[5] | 钱虹, 叶建华, 钱非, 等. 蒸汽发生器水位全程控制系统数字化及仿真实现[J]. 核动力工程, 2010, 31(2): 58-62. |
QIAN Hong, YE Jianhua, QIAN Fei, et al. Digitization and simulation realization of full range control system for steam generator water level[J]. Nuclear Power Engineering, 2010, 31(2): 58-62. | |
[6] | 乔静, 杨平. 压水堆核电站蒸汽发生器水位的MCP-PID控制[J]. 核科学与工程, 2018, 38(3): 367-374. |
QIAO Jing, YANG Ping. MCP-PID control of PWR steam generator water level[J]. Nuclear Science and Engineering, 2018, 38(3): 367-374. | |
[7] |
LE W, FANG F, YANG S. Adaptive backstepping-based composite nonlinear feedback water level control for the nuclear U-tube steam generator[J]. IEEE Transactions on Control Systems Technology, 2014, 22(1): 369-377.
doi: 10.1109/TCST.2013.2250504 URL |
[8] |
ANSARIFAR G R, TALEBI H A, DAVILU H. Adaptive estimator-based dynamic sliding mode control for the water level of nuclear steam generators[J]. Progress in Nuclear Energy, 2012, 56: 61-70.
doi: 10.1016/j.pnucene.2011.12.008 URL |
[9] | 姜頔, 刘向杰, 孔小兵. 核电站蒸汽发生器水位的软约束预测控制[J]. 自动化学报, 2019, 45(6): 1111-1121. |
JIANG Di, LIU Xiangjie, KONG Xiaobing. Soft constrained MPC on water level control in steam generator of a nuclear power plant[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 45(6): 1111-1121. | |
[10] | 黄伟, 杨爽爽. 基于GMFAC的核电厂蒸汽发生器水位优化控制[J]. 核动力工程, 2017, 38(6): 81-86. |
HUANG Wei, YANG Shuangshuang. Optimal control of nuclear power plant steam generator based on GMFAC[J]. Nuclear Power Engineering, 2017, 38(6): 81-86. | |
[11] |
ELIASI H, DAVILU H, MENHAJ M B. Adaptive fuzzy model based predictive control of nuclear steam generators[J]. Nuclear Engineering and Design, 2007, 237(6): 668-676.
doi: 10.1016/j.nucengdes.2006.08.007 URL |
[12] | AGARWAL J, VIDYARTHI A, PARMAR G. Comparative analysis of fuzzy and LQR for water level control of U-tube steam generator[C]//2015 Communication, Control and Intelligent Systems. Mathura, India: IEEE, 2015: 324-329. |
[13] | 程启明, 吴凯, 白园飞, 等. 核电站蒸汽发生器水位的模糊GPC控制系统研究[J]. 电机与控制学报, 2012, 16(7): 83-89. |
CHENG Qiming, WU Kai, BAI Yuanfei, et al. Research on fuzzy GPC control system for water level of steam generator at nuclear power plant[J]. Electric Machines and Control, 2012, 16(7): 83-89. | |
[14] | WANG X S, LIU C Y, SONG Z Y, et al. Improved variable universe fuzzy PID application in beer fermentation process[C]//International Conference on Machine Learning & Cybernetics. Guangzhou,China: IEEE, 2015: 40-46. |
[15] | GAO M Q, HE S H. Self-adapting fuzzy PID control of variable universe in the nonlinear system[C]//Intelligent Computation Technology and Automation. Changsha, China: IEEE, 2008: 473-478. |
[16] | 柳江, 林晨, 叶明, 等. 馈能悬架变论域模糊控制[J]. 上海交通大学学报, 2016, 50(8): 1139-1143. |
LIU Jiang, LIN Chen, YE Ming, et al. Variable universe fuzzy control of energy regenerative suspension.[J]. Journal of Shanghai Jiao Tong university, 2016, 50(8): 1139-1143. | |
[17] |
ANNAMRAJU A, NANDIRAJU S. Robust frequency control in a renewable penetrated power system: An adaptive fractional order-fuzzy approach[J]. Protection and Control of Modern Power Systems, 2019, 4(1): 1-15.
doi: 10.1186/s41601-019-0115-7 URL |
[18] | 路永坤. 稳定变论域模糊控制系统设计方法研究[D]. 天津: 天津大学, 2010. |
LU Yongkun. Research of design method for stable variable universe fuzzy control system[D]. Tianjin: Tianjin University, 2010. | |
[19] | 曾碧凡. 核电站蒸汽发生器水位鲁棒控制研究[D]. 广州: 华南理工大学, 2017. |
ZENG Bifan. Study on water level robust control of steam generator of nuclear power station[D]. Guangzhou: South China University of Technology, 2017. |
[1] | 惠久武, 凌君, 栾振华, 王改霞, 董贺, 袁景淇. 核电站蒸汽发生器再循环水质量流量实时估计方法[J]. 上海交通大学学报, 2022, 56(1): 21-27. |
[2] | 乐健,张华,叶艳辉,范宇. 基于旋转电弧传感机器人立焊焊缝的跟踪[J]. 上海交通大学学报(自然版), 2015, 49(03): 348-352. |
[3] | 秦斌,周浩,邱丽,郭百顺,王欣. 基于模糊滑模控制的风力发电系统最大风能追踪[J]. 上海交通大学学报(自然版), 2014, 48(07): 993-997. |
[4] | 杨元龙1,2,孙宝芝2,张国磊2,张鹏2. 支撑板对蒸汽发生器流动与传热特性的影响[J]. 上海交通大学学报(自然版), 2014, 48(02): 205-209. |
[5] | 楚纪正, 杜彬, 陈娟. RTDA控制器参数性能分析及在线模糊自整定[J]. 上海交通大学学报(自然版), 2011, 45(08): 1167-1171. |
[6] | 李菁菁,任章,宋剑爽. 高超声速再入滑翔飞行器的模糊变结构控制 [J]. 上海交通大学学报(自然版), 2011, 45(02): 295-0300. |
[7] | 张宇腾,杨明,王春香. 基于主动视觉的智能车道路跟踪方法 [J]. 上海交通大学学报(自然版), 2010, 44(08): 1042-1045. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||