[1]沈悦, 姜志华, 颜国正, 等. 微型胃肠道机器人钳位机构和无线能量接收线圈的优化[J]. 上海交通大学学报, 2018, 52(1): 39-44.
SHEN Yue, JIANG Zhihua, YAN Guozheng, et al. Optimization and realization of wireless capsule robot[J]. Journal of Shanghai Jiao Tong University, 2018, 52(1): 39-44.
[2]陈雯雯, 颜国正, 王志武, 等. 肠道内窥镜活检机器人系统[J]. 上海交通大学学报, 2014, 48(5): 674-678.
CHEN Wenwen, YAN Guozheng, WANG Zhiwu, et al. Intestinal biopsy endoscopic robot system [J]. Journal of Shanghai Jiao Tong University, 2014, 48(5): 674-678.
[3]贺术, 颜国正, 柯全, 等. 肠道驻留机构的设计和实验[J]. 光学精密工程, 2015, 23(1): 102-109.
HE Shu, YAN Guozheng, KE Quan, et al. Design and experiment of an intestinal anchoring mechanism[J]. Optics and Precision Engineering, 2015, 23(1): 102-109.
[4]PHEE L, ACCOTO D, MENCIASSI A, et al. Analysis and development of locomotion devices for the gastrointestinal tract[J]. IEEE Transactions on Biomedical Engineering, 2002, 49(6): 613-616.
[5]KWON J, CHEUNG E, PARK S, et al. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces[J]. Biomedical Materials, 2006, 1(4): 216-220.
[6]PARK H J, KIM D, KIM B. A robotic colonoscope with long stroke and reliable leg clamping [J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(8): 1461-1466.
[7]GAO J Y, YAN G Z, WANG Z W, et al. Design and testing of a motor-based capsule robot powered by wireless power transmission[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 683-693.
[8]GAO J Y, YAN G Z. Locomotion analysis of an inchworm-like capsule robot in the intestinal tract[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(2): 300-310.
[9]CHEN W W, YAN G Z, WANG Z W, et al. A wireless capsule robot with spiral legs for human intestine[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(2): 147-161.
[10]HE S, YAN G Z, GAO J Y, et al. Frictional and viscous characteristics of an expanding-extending robotic endoscope in the intestinal environment[J]. Tribology Letters, 2015, 58(3): 1-10.
[11]CHEN W W, YAN G Z, HE S, et al. Wireless powered capsule endoscopy for colon diagnosis and treatment[J]. Physiological measurement, 2013, 34(11): 1545-1561.
[12]CARTA R, SFAKIOTAKIS M, PATEROMICHELAKIS N, et al. A multi-coil inductive powering system for an endoscopic capsule with vibratory actuation[J]. Sensors and Actuators A: Physical, 2011, 172(1): 253-258.
[13]GAO J Y, YAN G Z, WANG Z W, et al. A capsule robot powered by wireless power transmission: Design of its receiving coil[J]. Sensors and Actuators A: Physical, 2015, 234: 133-142.
[14]JIA Z W, YAN G Z, WANG Z W, et al. Efficiency optimization of wireless power transmission systems for active capsule endoscopes[J]. Physiological Measurement, 2011, 32(10): 1561-1573.
[15]GAO J Y, YAN G Z. A novel power management circuit using a super-capacitor array for wireless po-wered capsule robot[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1444-1455.
[16]LE BIHAN Y. Study on the transformer equivalent circuit of eddy current nondestructive evaluation[J]. NDT & E International, 2003, 36(5): 297-302.
[17]RAJU S, WU R X, CHAN M S, et al. Modeling of mutual coupling between planar inductors in wireless power applications[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 481-490.
[18]WOJDA R P, KAZIMIERCZUK M K. Winding resistance of litz-wire and multi-strand inductors[J]. IET Power Electronics, 2012, 5(2): 257-268.
[19]YU Q, HOLMES T W, NAISHADHAM K. RF equivalent circuit modeling of ferrite-core inductors and characterization of core materials[J]. IEEE Transactions on Electromagnetic Compatibility, 2002, 44(1): 258-262.
[20]修成竹, 任亮, 李宏男. 自感式拉力传感器理论模型与实验研究[J]. 仪器仪表学报, 2016, 37(12): 2797-2804.
XIU Chengzhu, REN Liang, LI Hongnan. Theoretical model and experimental research of self-inductance tension sensor [J]. Chinese Journal of Scientific Instrument, 2016, 37(12): 2797-2804.
[21]KAZIMIERCZUK M K. High-frequency magnetic components [M]. Chichester, UK: Wiley, 2009: 45-46. |