上海交通大学学报 ›› 2020, Vol. 54 ›› Issue (11): 1218-1226.doi: 10.16183/j.cnki.jsjtu.2019.018
• 学报(中文) • 上一篇
吉磊,钱林方,陈光宋,尹强
收稿日期:
2019-01-17
出版日期:
2020-12-04
发布日期:
2020-12-04
通讯作者:
钱林方,男,教授,博士生导师,电话(Tel.):025-84303202;E-mail: lfqian@vip.163.com.
作者简介:
吉磊(1990-),男,江苏省南京市人,博士生,主要研究方向为高速摩擦及多体动力学.
基金资助:
JI Lei,QIAN Linfang,CHEN Guangsong,YIN Qiang
Received:
2019-01-17
Online:
2020-12-04
Published:
2020-12-04
摘要: 准确与高效的求解算法一直是多体系统动力学领域的关键问题.重点研究了将Bathe积分算法应用于机械系统多体动力学方程的求解,将多体系统动力学方程整理为显含广义阻尼矩阵的一般形式.利用Bathe积分策略,推导了基于此形式动力学方程的求解流程,并将广义阻尼矩阵用于迭代计算时雅克比矩阵初值的选择,减少迭代计算次数.为了减小违约的影响,动力学方程中添加了Baumgarte违约稳定项.数值算例表明:利用Bathe积分算法求解多体系统动力学方程具有高准确性、良好的稳定性和较低的数值耗散,显含广义阻尼矩阵的动力学方程形式也使求解更加高效.
中图分类号:
吉磊,钱林方,陈光宋,尹强. 基于Bathe积分算法的机械系统多体动力学方程求解方法[J]. 上海交通大学学报, 2020, 54(11): 1218-1226.
JI Lei,QIAN Linfang,CHEN Guangsong,YIN Qiang. Solving Method for Dynamic Equations of Mechanical Multibody System by Using Bathe Integration Algorithm[J]. Journal of Shanghai Jiaotong University, 2020, 54(11): 1218-1226.
[1] | 刘延柱, 潘振宽, 戈新生. 多体系统动力学[M]. 北京: 高等教育出版社, 2014. |
LIU Yanzhu, PAN Zhenkuan, GE Xinsheng. Dynamics of multibody systems[M]. Beijing: Higher Education Press, 2014. | |
[2] | 洪嘉振. 计算多体系统动力学[M]. 北京: 高等教育出版社, 1999. |
HONG Jiazhen. Computational dynamics of multibody systems[M]. Beijing: Higher Education Press, 1999. | |
[3] | 洪嘉振, 刘铸永. 刚柔耦合动力学的建模方法[J]. 上海交通大学学报, 2008, 42(11): 1922-1926. |
HONG Jiazhen, LIU Zhuyong. Modeling methods of rigid-flexible coupling dynamics[J]. Journal of Shanghai Jiao Tong University, 2008, 42(11): 1922-1926. | |
[4] | 王铁成, 陈国平, 孙东阳. 基于绝对节点坐标法的柔性多体系统灵敏度分析[J]. 振动与冲击, 2015, 34(24): 89-92. |
WANG Tiecheng, CHEN Guoping, SUN Dongyang. Sensitivity analysis of flexible multibody systems based on absolute nodal coordinate formulation[J]. Journal of Vibration and Shock, 2015, 34(24): 89-92. | |
[5] | CHO H J, BAE D S, CHOI J H, et al. An efficient general purpose contact search algorithm using the relative coordinate system for multibody system dynamics[J]. Solid State Phenomena, 2007, 120: 129-134. |
[6] | 杜晓旭, 崔航, 向祯晖. 基于Kane方法的波浪驱动水下航行器动力学模型建立[J]. 兵工学报, 2016, 37(7): 1236-1244. |
DU Xiaoxu, CUI Hang, XIANG Zhenhui. The multi-body system dynamics modeling of wave-driven underwater vehicle based on Kane method[J]. Acta Armamentarii, 2016, 37(7): 1236-1244. | |
[7] | SUZUKI T, CHO H J, RYU H S. A recursive implementation method with implicit integrator for multibody dynamics[J]. The Proceedings of the Asian Conference on Multibody Dynamics, 2002, 2002: 600-601. |
[8] | 盛立伟, 刘锦阳, 余征跃. 柔性多体系统弹性碰撞动力学建模[J]. 上海交通大学学报, 2006, 40(10): 1790-1793. |
SHENG Liwei, LIU Jinyang, YU Zhengyue. Dynamic modeling of a flexible multibody system with elastic impact[J]. Journal of Shanghai Jiao Tong University, 2006, 40(10): 1790-1793. | |
[9] | OMAR M. Multibody dynamics formulation for modeling and simulation of roller chain using spatial operator[J]. MATEC Web of Conferences, 2016, 51: 01003. |
[10] | GONZLEZ F, DOPICO D, PASTORINO R, et al. Behaviour of augmented Lagrangian and Hamiltonian methods for multibody dynamics in the proximity of singular configurations[J]. Nonlinear Dynamics, 2016, 85(3): 1491-1508. |
[11] | NEGRUT D, RAMPALLI R, OTTARSSON G, et al. On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096)[J]. Journal of Computational and Nonlinear Dynamics, 2007, 2(1): 73-85. |
[12] | NEGRUT D, JAY L O, KHUDE N. A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics[J]. Journal of Computational and Nonlinear Dynamics, 2007, 4(2): 021008. |
[13] | JAY O L, NEGRUT D. A second order extension of the generalized-α method for constrained systems in mechanics[M]. Multibody dynamics. Dordrecht: Springer Netherlands, 2009: 143-158. |
[14] | LUNK C, SIMEON B. Solving constrained mechanical systems by the family of Newmark and α-methods[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 2006, 86(10): 772-784. |
[15] | SHABANA A A, HUSSEIN B A. A two-loop sparse matrix numerical integration procedure for the solution of differential/algebraic equations: Application to multibody systems[J]. Journal of Sound and Vibration, 2009, 327(3/4/5): 557-563. |
[16] | 马秀腾, 翟彦博, 罗书强. 基于θ1方法的多体动力学数值算法研究[J]. 力学学报, 2011, 43(5): 931-938. |
MA Xiuteng, ZHAI Yanbo, LUO Shuqiang. Numerical method of multibody dynamics based on θ1 method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 931-938. | |
[17] | 马秀腾, 翟彦博, 谢守勇. 多体系统动力学指标-2超定运动方程HHT积分改进方法[J]. 中国科学: 技术科学, 2018, 48(2): 229-236. |
MA Xiuteng, ZHAI Yanbo, XIE Shouyong. Improved HHT integration method for index-2 over-determined equations of motion in multibody system dynamics[J]. Scientia Sinica (Technologica), 2018, 48(2): 229-236. | |
[18] | 郭晛, 章定国, 陈思佳. Hilber-Hughes-Taylor-α法在接触约束多体系统动力学中的应用[J]. 物理学报, 2017, 66(16): 147-157. |
GUO Xian, ZHANG Dingguo, CHEN Sijia. Application of Hilber-Hughes-Taylor-α method to dynamics of flexible multibody system with contact and constraint[J]. Acta Physica Sinica, 2017, 66(16): 147-157. | |
[19] | 姚廷强, 黄亚宇, 王立华. 圆柱滚子轴承多体接触动力学研究[J]. 振动与冲击, 2015, 34(7): 15-23. |
YAO Tingqiang, HUANG Yayu, WANG Lihua. Multibody contact dynamics for cylindrical roller bearing[J]. Journal of Vibration and Shock, 2015, 34(7): 15-23. | |
[20] | 丁洁玉, 潘振宽. 多体系统动力学微分-代数方程广义-α投影法[J]. 工程力学, 2013, 30(4): 380-384. |
DING Jieyu, PAN Zhenkuan. Generalized-α projection method for differentialalgebraic equations of multibody dynamics[J]. Engineering Mechanics, 2013, 30(4): 380-384. | |
[21] | 刘颖, 马建敏. 多体系统动力学方程的基于离散零空间理论的Newmark积分算法[J]. 机械工程学报, 2012, 48(5): 87-91. |
LIU Ying, MA Jianmin. Discrete null space method for the newmark integration of multibody dynamic systems[J]. Journal of Mechanical Engineering, 2012, 48(5): 87-91. | |
[22] | BATHE K J, BAIG M M I. On a composite implicit time integration procedure for nonlinear dynamics[J]. Computers & Structures, 2005, 83(31/32): 2513-2524. |
[23] | BATHE K J. Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme[J]. Computers & Structures, 2007, 85(7/8): 437-445. |
[24] | 陈光宋. 弹炮耦合系统动力学及关键参数识别研究[D]. 南京: 南京理工大学, 2016. |
CHEN Guangsong. The study on the dynamic of the projectile-barrel coupled system and the corresponding key parameters[D]. Nanjing: Nanjing University of Science and Technology, 2016. | |
[25] | BAUMGARTE J. Stabilization of constraints and integrals of motion in dynamical systems[J]. Computer Methods in Applied Mechanics and Engineering, 1972, 1(1): 1-16. |
[26] | KIM J K, CHUNG I S, LEE B H. Determination of the feedback coefficients for the constraint violation stabilization method[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, 1990, 204(4): 233-242. |
[27] | HERTZ H. On the contact of rigid elastic solids and on hardness [M]. London: Macmillan, 1896: 146-183. |
[1] | 邹凡, 刘锦阳, 余征跃. 柔性体碰撞阻尼模型的适用性分析[J]. 上海交通大学学报(自然版), 2011, 45(10): 1444-1449. |
[2] | 石望, 刘锦阳. 大变形弹塑性梁的刚柔耦合动力学特性[J]. 上海交通大学学报(自然版), 2011, 45(10): 1469-1474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||