上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (9): 1108-1115.doi: 10.16183/j.cnki.jsjtu.2018.330
所属专题: 《上海交通大学学报》2021年“土木建筑工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
收稿日期:
2019-02-01
出版日期:
2021-09-28
发布日期:
2021-10-08
通讯作者:
陈锦剑
E-mail:chenjj@sjtu.edu.cn
作者简介:
熊国军(1985-),男,湖北省黄冈市人,博士生,主要从事岩土工程研究
基金资助:
XIONG Guojun, WANG Jianhua, CHEN Jinjian()
Received:
2019-02-01
Online:
2021-09-28
Published:
2021-10-08
Contact:
CHEN Jinjian
E-mail:chenjj@sjtu.edu.cn
摘要:
基于泥浆压力平衡地压的原理,建立一种分析桩孔稳定的力学模型,分析无支护开挖、泥浆护壁成孔、硬支护成孔3种施工方式的应用条件与使用范围,给出无支护成孔最大深度、护壁泥浆下限容重的确定办法与实用表格.研究结果表明:土体的摩擦角、黏聚力与泥浆容重是维持桩孔稳定的基本要素;当成孔深度小于无支护成孔最大深度时,可采用无支护开挖,否则须采用泥浆护壁辅助成孔,且泥浆重度不得小于场地土要求的护壁泥浆下限容重;当摩擦角大于25°时,可任意选择泥浆重度;当查表计算所得的护壁泥浆下限容重大于规范给定的最大泥浆容重时,则需采用套管等硬支护措施.
中图分类号:
熊国军, 王建华, 陈锦剑. 基于泥浆平衡地压的桩孔稳定性分析及支护建议[J]. 上海交通大学学报, 2021, 55(9): 1108-1115.
XIONG Guojun, WANG Jianhua, CHEN Jinjian. Stability Analysis and Support Suggestions of Pile Hole Based on Mud Pressure Balance Earth Pressure[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1108-1115.
表1
6个拟合系数的取值
φ/(°) | lγ | mγ | nγ | lq | mq | nq |
---|---|---|---|---|---|---|
0 | 0 | 1 | 0 | 0.9765 | 0.0002 | 0 |
5 | 0.1049 | 0.9307 | -0.0004 | 0.9410 | 0.0023 | -0.0000 |
10 | 0.2588 | 0.8366 | -0.0011 | 0.8996 | 0.0043 | -0.0001 |
15 | 0.4425 | 0.7208 | -0.0019 | 0.8511 | 0.0060 | -0.0001 |
20 | 0.6857 | 0.5499 | -0.0029 | 0.7945 | 0.0073 | -0.0001 |
25 | 0.8151 | 0.4470 | -0.0031 | 0.7290 | 0.0080 | -0.0001 |
30 | 0.9475 | 0.3050 | -0.0030 | 0.6537 | 0.0079 | -0.0001 |
35 | 0.9879 | 0.1761 | -0.0024 | 0.5684 | 0.0068 | -0.0001 |
表2
不同摩擦角与相对黏聚力下的$\bar{z}_{cr}$
φ/ (°) | | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c/(γRA) =1 | c/(γRA) =2 | c/(γRA) =3 | c/(γRA) =4 | c/(γRA) =5 | c/(γRA) =6 | c/(γRA) =7 | c/(γRA) =8 | c/(γRA) =9 | c/(γRA) =10 | c/(γRA) =11 | c/(γRA) =12 | c/(γRA) =13 | c/(γRA) =14 | c/(γRA) =15 | ||
0 | 2.3 | 4.5 | 6.6 | 8.6 | 10.6 | 12.5 | 14.4 | 16.3 | 18.2 | 20.0 | 21.8 | 23.6 | 25.4 | 27.2 | 29.0 | |
5 | 2.7 | 5.2 | 7.9 | 10.1 | 12.5 | 14.8 | 17.1 | 20.5 | 21.7 | 24.0 | 26.1 | 28.3 | 30.5 | 32.7 | 34.9 | |
10 | 3.0 | 6.2 | 9.3 | 12.3 | 15.3 | 18.3 | 21.3 | 24.0 | 27.1 | 30.0 | 32.9 | 35.8 | 38.6 | 41.5 | 44.3 | |
15 | 3.6 | 7.6 | 11.7 | 15.9 | 20.0 | 24.2 | 28.3 | 32.7 | 36.5 | 40.5 | 44.7 | 48.7 | 52.8 | 56.8 | 60.9 | |
20 | 4.5 | 10.2 | 16.3 | 22.6 | 29.0 | 35.5 | 41.9 | 48.4 | 54.9 | 61.4 | 68.0 | 74.5 | 81.0 | 87.5 | 94.0 | |
25 | 6.1 | 15.5 | 26.1 | 37.3 | 50.1 | 62.2 | 74.5 | 86.8 | 99.2 | 111.5 | 124.1 | 136.7 | 149.3 | 161.9 | 174.6 | |
30 | 10.8 | 31.7 | 60.2 | 78.4 | 120.2 | 150.9 | 180.8 | 214.9 | 226.7 | 281.3 | 316.1 | 350.6 | 377.0 | 415.7 | 456.1 | |
35 | 35.8 | 140.6 | 263.5 | 382.7 | 495.7 | 603.7 | 725.1 | 1036.9 | 1189.2 | 1341.7 | ∞ | ∞ | ∞ | ∞ | ∞ | |
40 | 580.8 | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ | ∞ |
表3
不同摩擦角与相对黏聚力下的 γ - sw _ min
φ/(°) | | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c/(γRA) =1 | c/(γRA) =2 | c/(γRA) =3 | c/(γRA) =4 | c/(γRA) =5 | c/(γRA) =6 | c/(γRA) =7 | c/(γRA) =8 | c/(γRA) =9 | c/(γRA) =10 | c/(γRA) =11 | c/(γRA) =12 | c/(γRA) =13 | c/(γRA) =14 | c/(γRA) =15 | ||
0 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | |
5 | 0.804 | 0.826 | 0.848 | 0.870 | 0.892 | 0.914 | 0.936 | 0.958 | 0.980 | 1.002 | 1.024 | 1.046 | 1.068 | 1.091 | 1.113 | |
10 | 0.606 | 0.623 | 0.641 | 0.658 | 0.675 | 0.692 | 0.709 | 0.726 | 0.744 | 0.761 | 0.778 | 0.795 | 0.812 | 0.829 | 0.847 | |
15 | 0.438 | 0.451 | 0.464 | 0.477 | 0.490 | 0.504 | 0.517 | 0.530 | 0.543 | 0.556 | 0.569 | 0.583 | 0.596 | 0.609 | 0.622 | |
20 | 0.279 | 0.289 | 0.299 | 0.309 | 0.319 | 0.329 | 0.338 | 0.348 | 0.358 | 0.368 | 0.378 | 0.388 | 0.397 | 0.407 | 0.417 | |
25 | 0.188 | 0.195 | 0.202 | 0.209 | 0.216 | 0.223 | 0.230 | 0.237 | 0.244 | 0.251 | 0.258 | 0.265 | 0.272 | 0.279 | 0.286 | |
30 | 0.106 | 0.111 | 0.115 | 0.12 | 0.124 | 0.129 | 0.134 | 0.138 | 0.143 | 0.147 | 0.152 | 0.156 | 0.161 | 0.166 | 0.170 | |
35 | 0.050 | 0.053 | 0.056 | 0.058 | 0.061 | 0.064 | 0.066 | 0.069 | 0.071 | 0.074 | 0.077 | 0.079 | 0.082 | 0.085 | 0.087 |
表4
不同摩擦角与相对黏聚力下的$\bar{z}_{max}$
φ/(°) | | ||||||||
---|---|---|---|---|---|---|---|---|---|
c/(γRA)=1 | c/(γRA)=2 | c/(γRA)=3 | c/(γRA)=4 | c/(γRA)=5 | c/(γRA)=6 | c/(γRA)=7 | c/(γRA)=8 | ||
0 | 7.5 | 14.2 | 20.5 | 26.7 | 32.7 | 38.7 | 44.6 | 50.6 | |
5 | 28.6 | 58.8 | 88.0 | 116.5 | 144.6 | 172.5 | 200.2 | 227.7 | |
φ/(°) | | ||||||||
c/(γRA)=9 | c/(γRA)=10 | c/(γRA)=11 | c/(γRA)=12 | c/(γRA)=13 | c/(γRA)=14 | c/(γRA)=15 | c/(γRA)=16 | ||
0 | 56.4 | 62.3 | 68.2 | 74.0 | 79.9 | 85.8 | 91.6 | — | |
5 | 255.1 | 282.4 | 309.6 | 336.9 | 363.8 | 390.7 | 417.2 | — |
[1] | 陈国灿. 钻孔灌注桩孔壁稳定的条件[J]. 长春工程学院学报(自然科学版), 2002, 3(3):36-39. |
CHEN Guocan. The conditions of keeping the hole-wall of pre-bored holes from yielding[J]. Journal of Changchun Institute of Technology (Nature Science Edition), 2002, 3(3):36-39. | |
[2] | 胡晓敏, 李之达. 厚冲积覆盖层地区桥梁钻孔灌注桩成孔的力学分析[J]. 武汉理工大学学报(交通科学与工程版), 2007, 31(4):734-737. |
HU Xiaomin, LI Zhida. Hole forming mechanics analysis of the bored filling pile on the bridges in alluviation overburden area[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2007, 31(4):734-737. | |
[3] | 王利群, 韩洪德, 许子峰. 人工挖孔桩桩孔稳定性分析[J]. 辽宁工程技术大学学报(自然科学版), 2002, 21(2):177-179. |
WANG Liqun, HAN Hongde, XU Zifeng. The piles holes stabilization analysis of hand-excavation holes piles[J]. Journal of Liaoning Technical University (Natural Science Edition), 2002, 21(2):177-179. | |
[4] | 李小青, 郝行舟, 朱宏平, 等. 大口径钻孔灌注桩的孔壁稳定研究分析[J]. 华中科技大学学报(城市科学版), 2007, 24(2):25-28. |
LI Xiaoqing, HAO Xingzhou, ZHU Hongping, et al. Analysis on the stability of hole wall of large diameter bored pile[J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2007, 24(2):25-28. | |
[5] | 王云岗, 章光, 胡琦. 钻孔灌注桩孔壁稳定性分析[J]. 岩石力学与工程学报, 2011, 30(Sup.1):3281-3287. |
WANG Yungang, ZHANG Guang, HU Qi. Analysis of stability of bored pile hole-wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup.1):3281-3287. | |
[6] | 姚志伟. 厚砂层钻孔灌注桩泥浆护壁稳定性研究[D]. 武汉: 武汉理工大学, 2012. |
YAO Zhiwei. The stability of the slurry hole-wall of bored piles in thick sand[D]. Wuhan: Wuhan University of Technology, 2012. | |
[7] | 王作成. 大直径污水井孔壁失稳与泥浆护壁机理[J]. 中南大学学报(自然科学版), 2012, 43(12):4859-4864. |
WANG Zuocheng. Hole wall instability and mechanism of slurry protection about large diameter bilge well[J]. Journal of Central South University (Science and Technology), 2012, 43(12):4859-4864. | |
[8] | 黄博杰. 考虑圆拱效应与应力集中效应的桩孔自立稳定深度研究[D]. 重庆: 重庆大学, 2017. |
HUANG Bojie. Study on the independent stability depth of pile hole considering circular arch effect and stress concentration effect[D]. Chongqing: Chongqing University, 2017. | |
[9] | 黄博杰, 曹永红, 华建民, 等. 考虑圆拱效应的桩孔最大自立深度[J]. 土木建筑与环境工程, 2018, 40(2):6-11. |
HUANG Bojie, CAO Yonghong, HUA Jianmin, et al. Maximum self supporting depth of pile hole considering the effect of circular arch[J]. Journal of Civil, Architectural & Environmental Engineering, 2018, 40(2):6-11. | |
[10] | 李林, 李镜培, 岳著文, 等. 饱和黏土中钻孔灌注桩孔壁稳定性力学机制研究[J]. 岩土力学, 2016, 37(9):2496-2504. |
LI Lin, LI Jingpei, YUE Zhuwen, et al. Mechanical mechanism of hole-wall stability of bored pile in saturated clay[J]. Rock and Soil Mechanics, 2016, 37(9):2496-2504. | |
[11] | 别列赞采夫 V G. 松散体(土壤)极限平衡的轴对称问题[M]. 谢宗樑,黄贻吉. 北京: 建筑工程出版社, 1956. |
BEREZANTZEV V G. Axisymmetric problem of limit equilibrium for loose bodies (soil) [M]. XIE Zongliang, HUANG Yiji. Beijing: Architectural Engineering Press, 1956. | |
[12] |
XIONG G J, WANG J H. A rigorous characteristic line theory for axisymmetric problems and its application in circular excavations[J]. Acta Geotechnica, 2020, 15(2):439-453.
doi: 10.1007/s11440-018-0697-7 URL |
[13] |
XIONG G J, WANG J H, CHEN J J. Theory and practical calculation method for axisymmetric active earth pressure based on the characteristics method considering the compatibility condition[J]. Applied Mathematical Modelling, 2019, 68:563-582.
doi: 10.1016/j.apm.2018.11.022 URL |
[14] | 中华人民共和国住房和城乡建设部. 建筑桩基技术规范: JGJ94-2008[S]. 北京: 中国建筑工业出版社, 2008: 86-87. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building pile foundation: JGJ94-2008[S]. Beijing: China Architecture and Building Press, 2008: 86-87. | |
[15] |
LIU F Q, WANG J H, ZHANG L L. Axi-symmetric active earth pressure obtained by the slip line method with a general tangential stress coefficient[J]. Computers and Geotechnics, 2009, 36(1/2):352-358.
doi: 10.1016/j.compgeo.2008.02.002 URL |
[16] |
CHENG Y M, HU Y Y, WEI W B. General axisymmetric active earth pressure by method of characteristics—Theory and numerical formulation[J]. International Journal of Geomechanics, 2007, 7(1):1-15.
doi: 10.1061/(ASCE)1532-3641(2007)7:1(1) URL |
[17] | YU M H, LI J C, ZHANG Y Q. Unified characteristics line theory of spacial axisymmetric plastic problem[J]. Science in China Series E: Technolgical Science, 2001, 44(2):207-215. |
[18] |
TOBAR T, MEGUID M A. Experimental study of the earth pressure distribution on cylindrical shafts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11):1121-1125.
doi: 10.1061/(ASCE)GT.1943-5606.0000535 URL |
[19] | TRAN V D H, YACOUB T E, MEGUID M A. On the analysis of vertical shafts in soft ground: Evaluating soil-structure interaction using two different numerical modeling techniques[EB/OL]. [2018-06-01]. https://www.researchgate.net/publication/257578341. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||