上海交通大学学报 ›› 2021, Vol. 55 ›› Issue (9): 1116-1125.doi: 10.16183/j.cnki.jsjtu.2019.246
所属专题: 《上海交通大学学报》2021年“土木建筑工程”专题; 《上海交通大学学报》2021年12期专题汇总专辑
收稿日期:
2019-08-20
出版日期:
2021-09-28
发布日期:
2021-10-08
通讯作者:
周香莲
E-mail:zhouxl@sjtu.edu.cn
作者简介:
李宛玲(1994-),女,山西省运城市人,硕士生,主要研究方向为海洋岩土力学与工程.
基金资助:
LI Wanling1,3, ZHANG Qi1,3, ZHOU Xianglian1,2()
Received:
2019-08-20
Online:
2021-09-28
Published:
2021-10-08
Contact:
ZHOU Xianglian
E-mail:zhouxl@sjtu.edu.cn
摘要:
为了研究海洋环境中风浪荷载共同作用下单桩基础的动力响应问题,建立了风浪-海床-单桩的三维单向耦合数值模型.分别采用雷诺平均N-S方程和Biot动力方程控制波浪运动和海床响应,在验证模型合理性的基础上,探究了风浪参数(如风速、风剪切系数、波高)对风浪荷载共同作用下流体与桩基响应的影响规律.结果表明:风速、风剪切系数和波高的增长会加剧桩周流体变形,加快波浪传播,进而影响桩身的水平位移与弯矩.因此,在计算海上桩基承载力时,应综合考虑风浪荷载共同作用对桩基基础的影响.研究成果将为恶劣海洋环境下桩基承载性能研究提供重要的理论依据.
中图分类号:
李宛玲, 张琪, 周香莲. 风浪荷载共同作用下的海洋桩基动力响应[J]. 上海交通大学学报, 2021, 55(9): 1116-1125.
LI Wanling, ZHANG Qi, ZHOU Xianglian. Dynamic Response of Marine Pile Foundation Under Combined Action of Wind and Wave Loads[J]. Journal of Shanghai Jiao Tong University, 2021, 55(9): 1116-1125.
表1
本文采用数值模型的计算参数
参数 | 取值 | |
---|---|---|
风荷载 | 风速/(m·s-1) | 10,15,20 |
风剪切系数 | 0.1,0.3,0.5 | |
空气密度/(kg·m-3) | 1.18 | |
波浪荷载 | 水深/m | 20 |
周期/s | 5 | |
波高/m | 2,3,4 | |
波长/m | 38.87 | |
体积模量/(kN·m-3) | 2×109 | |
海床土体 | 切变模量/(N·m-2) | 8×106 |
渗透系数/(m·s-1) | 0.01 | |
泊松比 | 0.25 | |
孔隙率 | 0.4 | |
土体密度/(kg·m-3) | 1.85×103 | |
饱和度 | 0.98 | |
单桩基础 | 密度/(kN·m-3) | 7.85×103 |
直径/m | 6 | |
泊松比 | 0.25 | |
弹性模量/(N·m-2) | 2.7×1012 |
表3
不同条件下$M_{x,max}$ 和$M_{x,max} / M_{x0,max}$
条件 | 数值 | Mx,max/ (kN·m-1) | | 条件 | 数值 | Mx,max/ (kN·m-1) | | 条件 | 数值 | Mx,max/ (kN·m-1) | |
---|---|---|---|---|---|---|---|---|---|---|---|
W/(m·s-1) | 10 | 19282.63 | 72.63 | C'D | 0.1 | 15341.25 | 57.78 | H/m | 2 | 11792.34 | 44.41 |
15 | 26550.86 | 100.00 | 0.3 | 19561.70 | 73.68 | 3 | 26550.86 | 100.00 | |||
20 | 28672.24 | 107.99 | 0.5 | 26550.86 | 100.00 | 4 | 31406.79 | 118.29 |
[1] |
KEIVANPOUR S, RAMUDHIN A, AIT KADI D. The sustainable worldwide offshore wind energy potential: A systematic review[J]. Journal of Renewable and Sustainable Energy, 2017, 9(6):065902.
doi: 10.1063/1.5009948 URL |
[2] | 李晓宇, 王伟. 基于SWOT分析我国海上风力发电的发展现状[J]. 华北电力大学学报(社会科学版), 2018(5):42-49. |
LI Xiaoyu, WANG Wei. The status quo of China’s offshore wind power generation development based on SWOT analysis method[J]. Journal of North China Electric Power University (Social Sciences), 2018(5):42-49. | |
[3] |
WANG P G, ZHAO M, DU X L, et al. Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay[J]. Soil Dynamics and Earthquake Engineering, 2018, 113:47-57.
doi: 10.1016/j.soildyn.2018.04.028 URL |
[4] | 马宏旺, 杨峻, 陈龙珠. 长期反复荷载作用对海上风电单桩基础的影响分析[J]. 振动与冲击, 2018, 37(2):121-126. |
MA Hongwang, YANG Jun, CHEN Longzhu. Effects of long-term cyclic loadings on offshore wind turbine monopile foundation[J]. Journal of Vibration and Shock, 2018, 37(2):121-126. | |
[5] |
KIM J H, KIM S, KIM D S, et al. Bearing capacity of hybrid suction foundation on sand with loading direction via centrifuge model test[J]. Japanese Geotechnical Society Special Publication, 2016, 2(37):1339-1342.
doi: 10.3208/jgssp.KOR-23 URL |
[6] |
SHEMER L. Laboratory study of temporal and spatial evolution of waves excited on water surface initially at rest by impulsive wind forcing[J]. Procedia IUTAM, 2018, 26:153-161.
doi: 10.1016/j.piutam.2018.03.015 URL |
[7] |
HRISTOV T. Mechanistic, empirical and numerical perspectives on wind-waves interaction[J]. Procedia IUTAM, 2018, 26:102-111.
doi: 10.1016/j.piutam.2018.03.010 URL |
[8] |
BRUNETTI M, MARCHIANDO N, BERTI N, et al. Nonlinear fast growth of water waves under wind forcing[J]. Physics Letters A, 2014, 378(14/15):1025-1030.
doi: 10.1016/j.physleta.2014.02.004 URL |
[9] |
PHILLIPS O M. On the generation of waves by turbulent wind[J]. Journal of Fluid Mechanics, 1957, 2(5):417.
doi: 10.1017/S0022112057000233 URL |
[10] | LIU K, CHEN Q, HU K L, et al. Numerical simulations of sediment deposition and erosion on Louisiana Coast during hurricane Gustav[C]// The Proceedings of the Coastal Sediments 2015. California, USA: World Scientific, 2015: 1-14. |
[11] |
CHAMBAREL J, KHARIF C, KIMMOUN O. Ge-neration of two-dimensional steep water waves on finite depth with and without wind[J]. European Journal of Mechanics-B/Fluids, 2010, 29(2):132-142.
doi: 10.1016/j.euromechflu.2009.12.002 URL |
[12] | 张小玲, 刘建秀, 杜修力, 等. 风浪流共同作用下海上风电基础与海床的动力响应分析[J]. 防灾减灾工程学报, 2018, 38(4):658-668. |
ZHANG Xiaoling, LIU Jianxiu, DU Xiuli, et al. Dynamic response analysis of offshore wind power foundation and seabed under the combined wind, wave and current loadings[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(4):658-668. | |
[13] | 胡聪. 近海风电单桩基础所受波浪荷载计算方法研究[J]. 海洋技术学报, 2018, 37(5):89-94. |
HU Cong. Study on the calculating methods of wave load acting on monopile supporting offshore wind turbines[J]. Journal of Ocean Technology, 2018, 37(5):89-94. | |
[14] | 张忆州, 廖晨聪, 陈锦剑. 椭圆余弦波作用下考虑桩身振动的桩-土相互作用[J]. 上海交通大学学报, 2019, 53(1):85-92. |
ZHANG Yizhou, LIAO Chencong, CHEN Jinjian. Interaction between mono-pile and porous seabed under cnoidal wave and pile rocking[J]. Journal of Shanghai Jiao Tong University, 2019, 53(1):85-92. | |
[15] | JENG D S, RAHMAN M S, LEE T L. Effects of inertia forces on wave-induced seabed response[J]. International Journal of Offshore and Polar Engineering, 1999, 9(4):7. |
[16] |
ARANY L, BHATTACHARYA S, MACDONALD J, et al. Simplified critical mudline bending moment spectra of offshore wind turbine support structures[J]. Wind Energy, 2015, 18(12):2171-2197.
doi: 10.1002/we.v18.12 URL |
[17] |
ABHINAV K A, SAHA N. Coupled hydrodynamic and geotechnical analysis of jacket offshore wind turbine[J]. Soil Dynamics and Earthquake Engineering, 2015, 73:66-79.
doi: 10.1016/j.soildyn.2015.03.002 URL |
[18] |
ZHANG Q, ZHOU X L, WANG J H, et al. Wave-induced seabed response around an offshore pile foundation platform[J]. Ocean Engineering, 2017, 130:567-582.
doi: 10.1016/j.oceaneng.2016.12.016 URL |
[19] |
HSU J R C, JENG D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11):785-807.
doi: 10.1002/(ISSN)1096-9853 URL |
[20] | 单铁兵, 杨建民, 李欣, 等. 水流对立柱周围波浪爬升特性的影响[J]. 上海交通大学学报, 2014, 48(1):116-124. |
SHAN Tiebing, YANG Jianmin, LI Xin, et al. Current effects on wave run-up characteristics around column[J]. Journal of Shanghai Jiao Tong University, 2014, 48(1):116-124. |
[1] | 黎蔚杰, 张琪, 廖晨聪, 周香莲, 刘晨晨. 孤立波和海流作用下单桩基础局部冲刷及保护的数值分析[J]. 上海交通大学学报, 2021, 55(6): 631-637. |
[2] | 刘晨晨, 张琪, 李明广, 周香莲, 黎蔚杰. 波浪与地震荷载共同作用下桩的动力响应[J]. 上海交通大学学报, 2021, 55(6): 638-644. |
[3] | 胡安峰, 南博文, 陈缘, 付鹏. 基于砂土刚度衰减模型的修正p-y曲线法[J]. 上海交通大学学报, 2020, 54(12): 1316-1323. |
[4] | 胡安峰,肖志荣,江进华,付鹏,南博文. 双向循环荷载下的单桩基础累积侧向位移[J]. 上海交通大学学报, 2020, 54(1): 85-91. |
[5] | 张忆州a, 廖晨聪a, b, 陈锦剑a, b. 椭圆余弦波作用下考虑桩身振动的桩-土相互作用[J]. 上海交通大学学报, 2019, 53(1): 85-92. |
[6] | 胡翔, 陈锦剑, 王建华. 短峰波作用下饱和海床中的单桩响应分析[J]. 上海交通大学学报, 2016, 50(11): 1737-1741. |
[7] | 陈锦剑, 王建华, 朱峰. 软土地区单桩沉降的简化计算方法[J]. 上海交通大学学报, 2006, 40(12): 2126-2129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||