上海交通大学学报 ›› 2017, Vol. 51 ›› Issue (12): 1504-1511.doi: 10.16183/j.cnki.jsjtu.2017.12.014
沈志平,单铁兵,潘方豪,张海彬,王璞
发布日期:
2017-11-30
基金资助:
SHEN Zhiping,SHAN Tiebing,PAN Fanghao,ZHANG Haibin,WANG Pu
Published:
2017-11-30
摘要: 基于CFD数值计算方法对深水半潜式平台的涡激运动开展优化研究,提出一种能够抑制涡激运动的半潜平台新形式,并应用模型试验进行对比验证.研究了新型平台和传统型平台的涡激运动特征,对纵向偏移、横荡响应的幅值和分布规律,锁定区间等关键因素进行对比分析;研究了各方向耦合作用下平台的轨迹特征;详细分析了新型平台的减涡机制,从平台泄涡结构和涡激响应的均匀性、稳定性以及响应幅值等方面展开研究,阐述立柱的横剖面形状,排列形式等对平台涡激运动性能的影响.研究表明,这种“立柱的横剖面形状为梯形,呈外八字对称排列”的新型平台形式对抑制平台涡激运动具有积极影响,有助于减少或延缓强非线性涡激运动对系泊、立管系统的破坏作用.
中图分类号:
沈志平,单铁兵,潘方豪,张海彬,王璞. 深水半潜式平台的涡激运动II.船型优化研究[J]. 上海交通大学学报, 2017, 51(12): 1504-1511.
SHEN Zhiping,SHAN Tiebing,PAN Fanghao,ZHANG Haibin,WANG Pu. Vortex-Induced Motion Response of Semi-Submersible Platform in Deep Water: II. Investigation on Hull Optimization[J]. Journal of Shanghai Jiao Tong University, 2017, 51(12): 1504-1511.
[1]ANTONY A, VINAYAN V, HALKYARD J, et al. A CFD based analysis of the vortex induced motion of deep-draft semi-submersibles[C]∥Proceedings of the 25th International Ocean and Polar Engineers Conference. Kona: ISOPE, 2015. [2]API. Design and analysis of stationkeeping systems for floating structures[S]. 3rd Edition. USA: American Petroleum Institute, 2005: 67-156. [3]WAALS O J, BULTEMA S. Flow induced motions of multi column floaters[C]∥Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego: OMAE, 2007: 29539. [4]RIJKEN O, LEVERETTE S. Experimental study into vortex induced motion response of semi submersibles with square columns[C]∥Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril: OMAE, 2008: 57396. [5]HONG Y, CHOI Y, LEE J, et al. Vortex-induced motion of a deep-draft semi-submersible in current and waves[C]∥Proceedings of the 18th International Offshore and Polar Engineering Conference. Vancouver: ISOPE, 2008. [6]RIJKEN O, LEVERETTE S. Field measurements of vortex induced motions of a deep draft semisubmersible[C]∥Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu: OMAE, 2009: 79803. [7]MARTIN B, RIJKEN O. Experimental analysis of surface geometry, external damping and waves on semisubmersible vortex induced motion[C]∥Proceedings of the 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro: OMAE, 2012: 83689. [8]GONCALVES R T, ROSETTI G, FUJARRA A L C, et al. Experimental study on vortex-induced motions of a semi-submersible platform with four square columns, Part I: Effects of current incidence angle and hull appendages[J]. Ocean Engineering, 2012, 54(4): 150-169. [9]GONCALVES R T, ROSETTI G, FUJARRA A L C, et al. Experimental study on vortex-induced motions of a semi-submersible platform with four square columns, Part II: Effects of surface wave, external damping and draft condition[J]. Ocean Engineering, 2013, 62(2): 10-24. [10]TAN J H C, MAGEE A, KIM J M, et al. CFD simulation for vortex induced motions of a multi-column floating platform[C]∥Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes: OMAE, 2013: 11117. [11]PONTAZA J P, BAAR J. Vortex-induced motions of a model scale column stabilized floater with round columns in calm water and random waves[C]∥Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering. St. John’s: OMAE, 2015: 42407. [12]LIU M Y, XIAO L F, LIANG Y B, et al. Experimental and numerical studies of the pontoon effect on vortex-induced motions of deep-draft semi-submersibles[J]. Journal of Fluids and Structures, 2017, 72: 59-79. [13]LIU M Y, XIAO L F, LU H N, et al. Experimental study on vortex-induced motions of a semi-submersible with square columns and pontoons at different draft conditions and current incidences[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(3): 326-338. [14]XU Q. A new semisubmersible design for improved heave motion, vortex-induced motion and quayside stability[C]∥Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering. Rotterdam: OMAE, 2011: 49118. [15]XU Q, KIM J, BHAUMIK T, et al. Validation of HVS semisubmersible VIM performance by model test and CFD[C]∥Proceedings of the 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro: OMAE, 2012: 83207. |
[1] | 赵国成,肖龙飞,杨建民,岳子钰. 深海水力集矿球形颗粒受力特性试验研究[J]. 上海交通大学学报, 2019, 53(8): 907-912. |
[2] | 张忆州a, 廖晨聪a, b, 陈锦剑a, b. 椭圆余弦波作用下考虑桩身振动的桩-土相互作用[J]. 上海交通大学学报, 2019, 53(1): 85-92. |
[3] | 荣富, 廖晨聪, 童大贵, 周香莲. 波浪作用下渗透率各向异性的海床液化分析[J]. 上海交通大学学报, 2019, 53(1): 93-99. |
[4] | 吴凡, 肖龙飞, 刘明月, 田新亮. 矩形截面半潜式平台浪流耦合作用涡激运动响应二维数值模拟[J]. 上海交通大学学报, 2016, 50(03): 460-464. |
[5] | 杜宇, 武文华, 岳前进, 时忠民, 李峰, 谢日彬, 黄东. 深水浮式平台原型监测技术[J]. 上海交通大学学报, 2016, 50(03): 448-455. |
[6] | 任少飞, 唐文勇, 薛鸿祥. 非黏结柔性立管骨架层失效数值计算方法[J]. 上海交通大学学报, 2016, 50(03): 465-471. |
[7] | 白旭. 基于下潜超深风险的潜艇耐压船体结构设计方法[J]. 上海交通大学学报(自然版), 2016, 50(01): 110-114. |
[8] | 赖智萌1, 肖龙飞1, 寇雨丰1, 范模2. 新概念深水半潜式生产平台水动力截断试验与数值计算[J]. 上海交通大学学报(自然版), 2013, 47(02): 329-334. |
[9] | 丛爽, 蒲亚坤. 视频编码快速块匹配算法的改进[J]. 上海交通大学学报(自然版), 2012, 46(12): 1885-1890. |
[10] | 单铁兵, 杨建民, 吕海宁. 深水造流系统的垂向剖面流预报与流场特性分析[J]. 上海交通大学学报(自然版), 2011, 45(10): 1479-1484. |
[11] | 董超1, 2, 田联房1, 赵慧洁2. 遗传关联向量机高光谱影像分类[J]. 上海交通大学学报(自然版), 2011, 45(10): 1516-1520. |
[12] | 姚宇鑫,王文华,黄一. 新型沙漏式浮式生产储油系统的概念设计分析[J]. 上海交通大学学报(自然版), 2014, 48(04): 558-564. |
[13] | 任少飞,唐文勇,薛鸿祥. 轴压下非黏结柔性立管响应特性的数值计算方法[J]. 上海交通大学学报(自然版), 2014, 48(04): 565-569. |
[14] | 王坤鹏,薛鸿祥,唐文勇. 基于全耦合模型和管土作用模型的深海悬链线立管触地区域疲劳特性分析[J]. 上海交通大学学报(自然版), 2014, 48(04): 576-582. |
[15] | 肖飞,杨和振. 深海钢悬链立管Hill不稳定性预测[J]. 上海交通大学学报(自然版), 2014, 48(04): 583-588. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 150
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1114
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||