上海交通大学学报 ›› 2017, Vol. 51 ›› Issue (12): 1493-1503.doi: 10.16183/j.cnki.jsjtu.2017.12.013
单铁兵,沈志平
发布日期:
2017-11-30
基金资助:
SHAN Tiebing,SHEN Zhiping
Published:
2017-11-30
摘要: 采用数值计算和模型试验相结合的方法对深水半潜式平台涡激运动特性进行了系统研究.模型试验在拖曳水池内开展,采用4点水平系泊方式;数值计算选用黏性流的计算流体力学方法,建立适用于研究平台涡激运动的分析方法,开发合理的网格划分模式,引入网格变形和重构技术解决非线性的流固耦合问题;研究半潜式平台在不同来流角度下的横荡运动、纵向偏移特征;深入研究涡激锁定现象,给出不同角度下的漩涡锁定区间,获得涡激锁定的相关特性;研究平台涡激响应随折合速度所经历的演化过程;揭示了平台涡激运动随时间变化的发展阶段,分析各阶段漩涡泄放的特点.
中图分类号:
单铁兵,沈志平. 深水半潜式平台的涡激运动I.关键特性研究[J]. 上海交通大学学报, 2017, 51(12): 1493-1503.
SHAN Tiebing,SHEN Zhiping. Vortex-Induced Motion Response of Semi-Submersible Platform in Deep Water: I. Investigation on Key Characteristics[J]. Journal of Shanghai Jiao Tong University, 2017, 51(12): 1493-1503.
[1]ANTONY A, VINAYAN V, HALKYARD J, et al. A CFD based analysis of the vortex induced motion of deep-draft semi-submersibles[C]∥Proceedings of the 25th International Ocean and Polar Engineers Conference. Hawaii: ISOPE, 2015: 21-26. [2]FUJARRA A L C, ROSETTI G F, WILDE J D, et al. State-of-art vortex-induced motion: A comprehensive survey after more than one decade of experimental investigation[C]∥Proceedings of the 31th International Conference on Offshore Mechanics and Arctic Engineering. Brazil: OMAE, 2012: 835. [3]WAALS O J, BULTEMA S. Flow induced motions of multi column floaters[C]∥Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering. California: OMAE, 2007: 29539. [4]RIJKEN O, LEVERETTE S. Experimental study into vortex induced motion response of semi submersibles with square columns[C]∥Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril: OMAE, 2008: 57396. [5]RIJKEN O, SCHUURMANS S, LEVERETTE S. Experimental investigations into the influences of SCRS and appurtenances on deepdraft semisubmersible vortex induced motion response[C]∥Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering. The Netherlands: OMAE, 2011: 49365. [6]GONCALVES R T, ROSETTI G F, FUJARRA A L C, et al. Experimental study on vortex-induced motions of a semi-submersible platform with four square columns, Part I: Effects of current incidence angle and hull appendages[J]. Ocean Engineering, 2012, 54(4): 150-169. [7]GONCALVES R T, ROSETTI G F, FUJARRA A L C, et al. Experimental study on vortex-induced motions of a semi-submersible platform with four square columns, Part II: Effects of surface wave, external damping and draft condition[J]. Ocean Engineering, 2013, 62(2): 10-24. [8]FUJARRA A L C, GONCALVES R T, ROSETTI G F, et al. Roughness effects on the VIM response of deep-draft semi-submersible platforms[C]∥Proceedings of the 25th International Ocean and Polar Engineering Conference. Hawaii: ISOPE, 2015: 21-26. [9]白治宁, 肖龙飞, 程正顺, 等. 深吃水半潜式平台涡激运动响应模型实验研究[J]. 船舶力学, 2014(4): 377-384. BAI Zhining, XIAO Longfei, CHENG Zhengshun, et al. Experimental study on vortex induced motion response of a deep draft semi-submersible platform[J]. Journal of Ship Mechanics, 2014(4): 377-384. [10]LIU M Y, XIAO L F, LU H N, et al. Experimental investigation into the influences of pontoon and column configuration on vortex-induced motions of deep-draft semi-submersibles[J]. Ocean Engineering, 2016, 123: 262-277. [11]LIU M Y, XIAO L F, YANG J M, et al. Parametric study on the vortex-induced motions of semi-submersibles: Effect of rounded ratios of the column and pontoon[J]. Physics of Fluids, 2017, 29(5): 055101. [12]TAN J H C, MAGEE A, KIM J M, et al. CFD simulation of vortex induced motions of a multi-column floating platform[C]∥Proceedings of the 32th International Conference on Ocean, Offshore and Arctic Engineering. Nantes: OMAE, 2013: 11117. [13]CHEN C R, CHEN H C. CFD simulation of vortex-induced motions of a deep draft semi-submersible platform[C]∥Proceedings of the 25th International Ocean and Polar Engineering Conference. Big Island: ISOPE, 2015: 21-26. [14]TAN J H C, TENG Y J, MAGEE A, et al. Vortex induced motion of TLP with consideration of appurtenances[C]∥Proceedings of the 33th International Conference on Ocean, Offshore and Arctic Engineering. San Francisco: OMAE, 2014: 23420. [15]SMITH C, SMITH T, RAHUMATHULLA L. The importance of grid convergence studies in the design of semi-submersible platform[C]∥Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering. Newfoundland: OMAE, 2015: 42030. [16]SPALART P R. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. Advances in ENS/LES[M]. Columbus: Greyden press, 1997. [17]GONCALVES R T, ROSETTI G F, FUJARRA A L C, et al. Vortex-induced yaw motion of a large-volume semi-submersible platform[C]∥Proceedings of the 22th International Offshore and Polar Engineering Conference. Rhodes: ISOPE, 2012. |
[1] | 赵国成,肖龙飞,杨建民,岳子钰. 深海水力集矿球形颗粒受力特性试验研究[J]. 上海交通大学学报, 2019, 53(8): 907-912. |
[2] | 张忆州a, 廖晨聪a, b, 陈锦剑a, b. 椭圆余弦波作用下考虑桩身振动的桩-土相互作用[J]. 上海交通大学学报, 2019, 53(1): 85-92. |
[3] | 荣富, 廖晨聪, 童大贵, 周香莲. 波浪作用下渗透率各向异性的海床液化分析[J]. 上海交通大学学报, 2019, 53(1): 93-99. |
[4] | 吴凡, 肖龙飞, 刘明月, 田新亮. 矩形截面半潜式平台浪流耦合作用涡激运动响应二维数值模拟[J]. 上海交通大学学报, 2016, 50(03): 460-464. |
[5] | 杜宇, 武文华, 岳前进, 时忠民, 李峰, 谢日彬, 黄东. 深水浮式平台原型监测技术[J]. 上海交通大学学报, 2016, 50(03): 448-455. |
[6] | 任少飞, 唐文勇, 薛鸿祥. 非黏结柔性立管骨架层失效数值计算方法[J]. 上海交通大学学报, 2016, 50(03): 465-471. |
[7] | 白旭. 基于下潜超深风险的潜艇耐压船体结构设计方法[J]. 上海交通大学学报(自然版), 2016, 50(01): 110-114. |
[8] | 赖智萌1, 肖龙飞1, 寇雨丰1, 范模2. 新概念深水半潜式生产平台水动力截断试验与数值计算[J]. 上海交通大学学报(自然版), 2013, 47(02): 329-334. |
[9] | 丛爽, 蒲亚坤. 视频编码快速块匹配算法的改进[J]. 上海交通大学学报(自然版), 2012, 46(12): 1885-1890. |
[10] | 单铁兵, 杨建民, 吕海宁. 深水造流系统的垂向剖面流预报与流场特性分析[J]. 上海交通大学学报(自然版), 2011, 45(10): 1479-1484. |
[11] | 董超1, 2, 田联房1, 赵慧洁2. 遗传关联向量机高光谱影像分类[J]. 上海交通大学学报(自然版), 2011, 45(10): 1516-1520. |
[12] | 姚宇鑫,王文华,黄一. 新型沙漏式浮式生产储油系统的概念设计分析[J]. 上海交通大学学报(自然版), 2014, 48(04): 558-564. |
[13] | 任少飞,唐文勇,薛鸿祥. 轴压下非黏结柔性立管响应特性的数值计算方法[J]. 上海交通大学学报(自然版), 2014, 48(04): 565-569. |
[14] | 王坤鹏,薛鸿祥,唐文勇. 基于全耦合模型和管土作用模型的深海悬链线立管触地区域疲劳特性分析[J]. 上海交通大学学报(自然版), 2014, 48(04): 576-582. |
[15] | 肖飞,杨和振. 深海钢悬链立管Hill不稳定性预测[J]. 上海交通大学学报(自然版), 2014, 48(04): 583-588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||