上海交通大学学报 ›› 2017, Vol. 51 ›› Issue (7): 796-804.doi: 10.16183/j.cnki.jsjtu.2017.07.005
庄祝跃,赵廷钰,方俊华,黄震
发布日期:
2017-07-31
基金资助:
ZHUANG Zhuyue,ZHAO Tingyu,FANG Junhua,HUANG Zhen
Published:
2017-07-31
Supported by:
摘要: 应用DMS500型快速颗粒分析仪对一台自然吸气缸内直喷汽油发动机排放的颗粒物粒径分布进行试验研究,考察了运行工况(负荷、冷却水温和点火时刻)以及喷油策略(喷油时刻、喷油压力)对颗粒物粒径分布特性及其微粒数量的影响规律,并分析了不同工况下颗粒物的氧化活化能.结果表明:缸内直喷汽油发动机排放的颗粒物粒径呈现出双峰变化特征,在30℃水温时,低负荷下以生成积聚模态颗粒物为主,高负荷下以生成核模态颗粒物为主;较低的冷却水温会增加排放的颗粒物数量;点火时刻的推迟能够减少颗粒物的生成;在不同负荷的喷油时刻都存在一个最佳的颗粒物排放点;喷油压力越高,生成的颗粒物数量越少,核模态颗粒物的比例越高;随着负荷增加和冷却水温降低,颗粒物的起燃温度升高,颗粒物的氧化活性降低.
中图分类号:
庄祝跃,赵廷钰,方俊华,黄震. 喷射策略和运行工况对直喷汽油机微粒排放的影响[J]. 上海交通大学学报, 2017, 51(7): 796-804.
ZHUANG Zhuyue,ZHAO Tingyu,FANG Junhua,HUANG Zhen. Effects of Injection Strategy and Operation Parameters on
Particle Emission of Gasoline Direct Injection Engine[J]. Journal of Shanghai Jiao Tong University, 2017, 51(7): 796-804.
[1]LEACH F, STONE R, RICHARDSON D. The influence of fuel properties on particulate number emissions from a direct injection spark ignition engine[EB/OL].[20161108].https:∥saemobilus.sae.org/content/2013011558. [2]WHITAKER P, KAPUS P, OGRIS M, et al. Measures to reduce particulate emissions from gasoline DI engines[J]. SAE International Journal of Engines, 2011. 4(1): 14981512. [3]WANG Y J, WANG J X, SHUAIS J, et al. Study of injection strategies of twostage gasoline direct injection (TSGDI) combustion system[EB/OL].[20161108].https:∥saemobilus.sae.org/content/2005010107. [4]BRAISHER M, STONE R, PRICE P. Particle number emissions from a range of europeanvehicles[EB/OL].[20161108].https:∥saemobilus.sae.org/content/2010010786. [5]CHOI K, KIM J, MYUNG C L, et al. Effect of the mixture preparation on the nanoparticle characteristics of gasoline directinjection vehicles[J]. Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering, 2012, 226(11): 15141524. [6]KRAFT D K M. Particle formation and models in internal combustion engines[EB/OL]. [20161108].https:∥como.cheng.cam.ac.uk/preprints/c4ePreprint142.pdf. [7]BONATESTA F, CHIAPPETTA E, ROCCA A L. Partload particulate matter from a GDI engine and the connection with combustion characteristics[J]. Applied Energy, 2014, 124(1): 366376. [8]FARRON C, MATTHIAS N, FOSTER D, et al. Particulate characteristics for varying engine operation in a gasoline spark ignited, direct injection engine[EB/OL].[20161107].https:∥saemobilus.sae.org/content/2011011220. [9]RAMADHAS A S, XU H. Influence of coolant temperature on cold start performance of diesel passenger car in cold environment[EB/OL].[20161108].https:∥saemobilus.sae.org/content/2016280142. [10]YUAN C, HONG W, SU Y, et al. Research on exhaust particle emissions of two direct injection gasoline engines during cold start[C]∥International Conference on Mechatronics and Automation (ICMA).USA: IEEE, 2015. [11]HE X, RATCLIFF M A, ZIGLERB T. Effects of gasoline direct injection engine operating parameters on particle number emissions[J]. Energy and Fuels, 2012, 26(4): 20142027. [12]PIOCK W F, BEFRUI B, BERNDORFER A, et al. Fuel pressure and charge motion effects on GDI engine particulate emissions[J]. SAE International Journal of Engines, 2015, 8(2): 464473. [13]李峂.汽油机缸内直喷 (GDI) 颗粒物排放特性研究[D]. 天津:天津大学机械工程学院,2012. [14]PEI Y Q, QIN J, PAN S Z. Experimental study on the particulate matter emission characteristics for a directinjection gasoline engine[J]. Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering, 2014, 228(6): 604616. [15]CHUNG J, KIM N, CHOI H, et al. Study on the effect of injection strategies on particulate emission characteristics under cold start using incylinder visualization[EB/OL].[20161108]. https:∥saemobilus.sae.org/content/2016010822. [16]潘锁柱, 宋崇林, 裴毅强,等. 点火定时对缸内直喷汽油机燃烧及颗粒物排放的影响[J]. 农业机械学报, 2013, 44(7): 2327. PAN Suozhu, SONG Chonglin, PEI Yiqiang, et al. Effect of spark timing on combustion and particle emission for gasoline direct injection engine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 2327. [17]朱小慧,陈鹏,方俊华. 燃料特性和工况对直喷汽油机微粒排放的影响[J]. 上海交通大学报,2017,51(1): 6975. ZHU Xiaohui, CHEN Peng, FANG Junhua. Effect of fuel properties and operation parameters on particle emission of gasoline direct injection engine[J]. Journal of Shanghai Jiao Tong University, 2017, 51(1): 6975. [18]潘锁柱, 宋崇林, 裴毅强, 等. 缸内直喷汽油机颗粒物粒径分布特性[J]. 天津大学学报: 自然科学与工程技术版, 2013, 46(7): 629634. PAN Suozhu, SONG Chonglin, PEI Yiqiang, et al. Particle size distribution from gasoline direct injection engine[J]. Journal of Tianjin University, 2013, 46(7): 629634. [19]帅石金, 郑荣, 王银辉,等. 缸内直喷汽油机微粒排放特性的试验研究[J]. 汽车安全与节能学报, 2014, 5(3): 304310. SHUAI Shijin, ZHENG Rong, WANG Yinhui, et al. Experimental study on the characteristics of particulate emissions from GDI engines[J]. Journal of Automotive Safety and Engergy, 2014, 5(3): 304310. [20]QIN J, LI X, PEI Y. Effects of combustion parameters and lubricating oil on particulate matter emissions from a turbocharged GDI engine fueled with methanol/gasoline blends[EB/OL].[20161108].https:∥saemobilus.sae.org/content/2014012841. [21]SAKAI S, HAGEMAN M, ROTHAMER D. Effect of equivalence ratio on the particulate emissions from a sparkignited, directinjected gasoline engine[EB/OL].[20161108].https:∥saemobilus.sae.org/content/2013011560. [22]SHIMADA T, SHOJI T, TAKEDA Y. The effect of fuel injection pressure on diesel engine performance[EB/OL].[20161108].https:∥saemobilus.sae.org/content/891919. [23]LAPUERTA M, BALLESTEROS R, RODRGUEZFERRNNDEZ J.Thermogravimetric analysis of diesel particulate matter[J]. Measurement Science and Technology, 2007, 18(3): 650658. [24]CHEN L, STONE R, RICHARDSON D. Effect of the valve timing and the coolant temperature on particulate emissions from a gasoline directinjection engine fuelled with gasoline and with a gasolineethanol blend[J]. Proceedings of the Institution of Mechanical Engineers. Part D: Journal of Automobile Engineering, 2012, 226(10): 14191430. [25]梅德清, 赵翔, 王书龙,等. 柴油机颗粒物催化状态热重特性及热动力学分析[J]. 内燃机工程, 2013,34(S1): 3741. MEI Deqing, ZHAO Xiang, WANG Shulong, et al. Thermogravimetric characteristics and thermokinetic analysis on PM emission of diesel engine with catalyst[J]. Chinese Internal Combustion Engine Engineering, 2013,34(S1): 3741. [26]WANG C M, XU H M, HERREROS J M, et al. Fuel effect on particulate matter composition and soot oxidation in a directinjection spark ignition (DISI) engine[J]. Energy & Fuels, 2014, 28(3): 20032012. |
[1] | 赵子任1, 杜世昌1, 黄德林1, 任斐2, 梁鑫光2. 多工序制造系统暂态阶段产品质量#br# 马尔科夫建模与瓶颈分析[J]. 上海交通大学学报, 2017, 51(10): 1166-1173. |
[2] | 周鹏辉, 马红占, 陈东萍, 陈梦月, 褚学宁. 基于模糊随机故障模式与影响分析的#br# 产品再设计模块识别[J]. 上海交通大学学报, 2017, 51(10): 1189-1195. |
[3] | 李昌玺1, 2, 周焰1, 林菡3, 李灵芝1, 郭戈1. 基于MIMOFNN模型的弹道导弹目标#br# 时空序贯融合识别方法[J]. 上海交通大学学报, 2017, 51(9): 1138-. |
[4] | 冯明月, 何明浩, 韩俊, 郁春来. 基于协方差拟合旋转不变子空间信号参数#br# 估计算法的高分辨到达角估计[J]. 上海交通大学学报, 2017, 51(9): 1145-. |
[5] | 杨平1,盛杰1,王禹程2,李柱永1,金之俭1,洪智勇1. YBa2Cu3O7δ超导带材非均匀性 对失超传播特性的影响[J]. 上海交通大学学报(自然版), 2017, 51(9): 1090-1096. |
[6] | 王星, 周一鹏, 田元荣, 陈游, 周东青, 贺继渊. 基于改进遗传算法和SinChirplet原子的调频#br# 雷达信号稀疏分解[J]. 上海交通大学学报, 2017, 51(9): 1124-1130. |
[7] | 张良俊1, 2, 李晓慈1, 吴静怡1, 蔡爱峰1. 大型空间展开机构微重力环境模拟#br# 悬吊装置热结构耦合分析[J]. 上海交通大学学报, 2017, 51(8): 954-961. |
[8] | 夏海亮1, 2, 刘亚坤1, 2, 刘全桢3, 刘宝全3, 傅正财1, 2. 长持续时间雷电流分量作用下电极形状#br# 对金属烧蚀特性的影响[J]. 上海交通大学学报, 2017, 51(8): 903-908. |
[9] | 谷家扬, 谢玉林, 陶延武, 黄祥宏, 吴介. 新型浮式钻井生产储油平台#br# 涡激运动数值模拟及试验研究 [J]. 上海交通大学学报, 2017, 51(7): 878-885. |
[10] | 林达, 朱益佳, 魏小栋, 王志宇, 张武高. 喷油参数对聚甲氧基二甲醚/柴油发动机燃烧及其#br# 颗粒物排放的影响[J]. 上海交通大学学报, 2017, 51(7): 787-795. |
[11] | 孟庆阳1, 阎威武1, 胡勇1, 程建林1, 陈世和2, 张曦2. 基于子空间方法的超超临界机组#br# 过热蒸汽系统模型辨识[J]. 上海交通大学学报, 2017, 51(6): 672-678. |
[12] | 蒋华军a, 蔡艳a, b, 李超豪a, 李芳a, b, 华学明a, b. 基于改进Sobel算法的焊缝X射线图像#br# 气孔识别方法[J]. 上海交通大学学报, 2017, 51(6): 665-671. |
[13] | 董冠华,殷勤,殷国富,向召伟. 机床结合部耦合动刚度的辨识与建模[J]. 上海交通大学学报(自然版), 2015, 49(09): 1263-1434. |
[14] | 谢启江,余海东. 硬岩掘进机刀盘载荷与撑靴接触界面刚度的耦合关系[J]. 上海交通大学学报(自然版), 2015, 49(09): 1269-1275. |
[15] | 仲健林1,马大为1,任杰1,李士军2,王旭3. 基于平面应变假设的橡胶圆筒静态受压分析[J]. 上海交通大学学报(自然版), 2015, 49(09): 1276-1280. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 79
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 863
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||