上海交通大学学报 ›› 2017, Vol. 51 ›› Issue (6): 647-656.doi: 10.16183/j.cnki.jsjtu.2017.06.002
邱梦婷,赵普,俞晖
发布日期:
2017-06-30
基金资助:
QIU Mengting,ZHAO Pu,YU Hui
Published:
2017-06-30
Supported by:
摘要: 针对全双工中继的残留回路干扰(RLI)和大规模多输入多输出(Massive MIMO)的导频污染问题,研究了一个多对用户的全双工双向中继系统,其中用户均为单天线,中继对信号进行最大比合并/最大比发射波束赋形,信道估计阶段使用长度为τ的导频序列,且τ=K.理论分析得出,当中继的收发天线数均趋于无穷大时,全双工中继的RLI和导频污染同时趋于零,并且用户对之间干扰和噪声均被消除.仿真结果证实了上述理论分析,并且随着中继天线数的增大,系统的频谱效率和能量效率将逐渐提高.进一步仿真表明,当中继的收发天线数大于160时,全双工双向中继系统的频谱效率优于半双工双向中继系统,继而优于全双工单向中继系统,并且优势随着天线数的增大更为显著.因此,大规模天线的全双工双向中继相较传统的中继系统具有更好的通信效率.
中图分类号:
邱梦婷,赵普,俞晖. 大规模天线全双工双向中继系统的干扰分析[J]. 上海交通大学学报, 2017, 51(6): 647-656.
QIU Mengting,ZHAO Pu,YU Hui. The Interference Analysis of the FullDuplex TwoWay Relaying with
Large Antenna Arrays[J]. Journal of Shanghai Jiao Tong University, 2017, 51(6): 647-656.
[1]LU L, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: Benefits and challenges [J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5): 742758. [2]NGO H Q, LARSSON E G, MARZETTA T L. Energy and spectral efficiency of very large multiuser MIMO systems [J]. IEEE Transactions on Communications, 2013, 61(4): 14361449. [3]BHARADIA D, MCMILIN E, KATTI S. Full duplex radios [C]// ACM SIGCOMM 2013. Hong Kong: ACM, 2013. [4]JOSE J, ASHIKHMIN A, MARZETTA Y L, et al. Pilot contamination and precoding in multicell TDD system [J]. IEEE Transactions on Wireless Communications, 2011, 10(8):26402651. [5]HANEDA K, KAHRA E, WYNE S, et al. Measurement of loopback interference channels for outdoortoindoor fullduplex radio relays [C]// Proceeding IEEE/SP 14th Workshop Statist Signal Process. Madison: IEEE, 2007: 478482. [6]CHUN B, LEE Y. A spatial selfinterference nullification method for full duplex amplifiedandforward MIMO relays [C]// Proceeding IEEE WCNC. Sydney: IEEE, 2010: 16. [7]BLISS D W, HANCOCK T M, SCHNITER P. Hardware phenomenological effects on cochannel fullduplex MIMO relay performance [C]// Proceeding 46th Asilomar Conference Signals, Systems and Computers. Pacific Grove: IEEE, 2012: 3439. [8]ZHENG X, LIU E, ZHANG Z, et al. An efficient pilot scheme in largescale twoway relay systems [J]. IEEE Communications Letters, 2015, 19(6): 10611064. [9]CUI H, SONG L, JIAO B. Multipair twoway amplifyandforward relaying with very large number of relay antennas [J]. IEEE Transactions on Wireless Communications. 2014, 13(5): 26362645. [10]WANG H, DING J, YANG J. Spectral and energy efficiency for multipair massive MIMO twoway relaying networks with imperfect CSI [C]// 2015 IEEE 82nd Vehicular Technology Conference (VTC2015Fall). Boston: IEEE, 2015: 16. [11]YANG J, WANG H, DING J, et al. Spectral and energy efficiency for massive MIMO multipair twoway relay networks with ZFR/ZFT and imperfect CSI [C]// 2015 21st AsiaPacific Conference on Communications (APCC). Kyoto: APCC, 2015: 4751. [12]KONG C, ZHONG C, MATTHAIOU M. Multipair twoway AF relaying systems with massive arrays and imperfect CSI [C]// 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Shanghai: ICASSP, 2016: 36513655. [13]NGO H Q, SURAWEERA H A, MATTHAIOU M, et al. Multipair massive MIMO fullduplex relaying with MRC/MRT processing [C]// 2014 IEEE International Conference on Communications (ICC). Sydney: ICC, 2014: 48074813. [14]NGO H Q, SURAWEERA H A, MATTHAIOU M, et al. Multipair fullduplex relaying with massive arrays and linear processing [J]. IEEE Journal on Sel. Areas in Communications, 2014, 32(9): 17211737. [15]ZHANG Z, CHEN Z, SHEN M, et al. Achievable rate analysis for multipair twoway massive MIMO fullduplex relay systems [C]// 2015 IEEE International Symposium on Information Theory (ISIT). Hong Kong: ISIT, 2015: 25982602. [16]XIA X, XIE W, ZHANG D, et al. Multipair fullduplex amplifyandforward relaying with very large antenna arrays [C]// 2015 IEEE Wireless Communications and Networking Conference (WCNC). Turkey: WCNC, 2015: 304309. [17]CRAMR H. Random variables and probability distributions [M]. Cambridge: Cambridge University Press, 2004. [18]EVANS J,TSE D N C. Large system performance of linear multiuser receivers in multipath fading channels [J]. IEEE Transactions on Information Theory, 2000, 46(6): 20592078. [19]SURAWEERA H A, KRIKIDIS I, GAN Z, et al. Low complexity endtoend performance optimization in MIMO fullduplex relay systems [J]. IEEE Transactions on Wireless Communications, 2014, 13(2): 913927. |
[1] | 赵子任1, 杜世昌1, 黄德林1, 任斐2, 梁鑫光2. 多工序制造系统暂态阶段产品质量#br# 马尔科夫建模与瓶颈分析[J]. 上海交通大学学报, 2017, 51(10): 1166-1173. |
[2] | 周鹏辉, 马红占, 陈东萍, 陈梦月, 褚学宁. 基于模糊随机故障模式与影响分析的#br# 产品再设计模块识别[J]. 上海交通大学学报, 2017, 51(10): 1189-1195. |
[3] | 李昌玺1, 2, 周焰1, 林菡3, 李灵芝1, 郭戈1. 基于MIMOFNN模型的弹道导弹目标#br# 时空序贯融合识别方法[J]. 上海交通大学学报, 2017, 51(9): 1138-. |
[4] | 冯明月, 何明浩, 韩俊, 郁春来. 基于协方差拟合旋转不变子空间信号参数#br# 估计算法的高分辨到达角估计[J]. 上海交通大学学报, 2017, 51(9): 1145-. |
[5] | 杨平1,盛杰1,王禹程2,李柱永1,金之俭1,洪智勇1. YBa2Cu3O7δ超导带材非均匀性 对失超传播特性的影响[J]. 上海交通大学学报(自然版), 2017, 51(9): 1090-1096. |
[6] | 王星, 周一鹏, 田元荣, 陈游, 周东青, 贺继渊. 基于改进遗传算法和SinChirplet原子的调频#br# 雷达信号稀疏分解[J]. 上海交通大学学报, 2017, 51(9): 1124-1130. |
[7] | 张良俊1, 2, 李晓慈1, 吴静怡1, 蔡爱峰1. 大型空间展开机构微重力环境模拟#br# 悬吊装置热结构耦合分析[J]. 上海交通大学学报, 2017, 51(8): 954-961. |
[8] | 夏海亮1, 2, 刘亚坤1, 2, 刘全桢3, 刘宝全3, 傅正财1, 2. 长持续时间雷电流分量作用下电极形状#br# 对金属烧蚀特性的影响[J]. 上海交通大学学报, 2017, 51(8): 903-908. |
[9] | 谷家扬, 谢玉林, 陶延武, 黄祥宏, 吴介. 新型浮式钻井生产储油平台#br# 涡激运动数值模拟及试验研究 [J]. 上海交通大学学报, 2017, 51(7): 878-885. |
[10] | 林达, 朱益佳, 魏小栋, 王志宇, 张武高. 喷油参数对聚甲氧基二甲醚/柴油发动机燃烧及其#br# 颗粒物排放的影响[J]. 上海交通大学学报, 2017, 51(7): 787-795. |
[11] | 孟庆阳1, 阎威武1, 胡勇1, 程建林1, 陈世和2, 张曦2. 基于子空间方法的超超临界机组#br# 过热蒸汽系统模型辨识[J]. 上海交通大学学报, 2017, 51(6): 672-678. |
[12] | 蒋华军a, 蔡艳a, b, 李超豪a, 李芳a, b, 华学明a, b. 基于改进Sobel算法的焊缝X射线图像#br# 气孔识别方法[J]. 上海交通大学学报, 2017, 51(6): 665-671. |
[13] | 董冠华,殷勤,殷国富,向召伟. 机床结合部耦合动刚度的辨识与建模[J]. 上海交通大学学报(自然版), 2015, 49(09): 1263-1434. |
[14] | 谢启江,余海东. 硬岩掘进机刀盘载荷与撑靴接触界面刚度的耦合关系[J]. 上海交通大学学报(自然版), 2015, 49(09): 1269-1275. |
[15] | 仲健林1,马大为1,任杰1,李士军2,王旭3. 基于平面应变假设的橡胶圆筒静态受压分析[J]. 上海交通大学学报(自然版), 2015, 49(09): 1276-1280. |
阅读次数 | ||||||
全文 72
|
|
|||||
摘要 |
|
|||||