[1] SOCIETY AC. Key statistics for thyroid cancer [EB/OL]. [2023-08-17]. https://www.cancer.org/cancer/thyroid-cancer/about/key-statistics.html
[2] PAPINI E. Risk of malignancy in nonpalpable thyroid nodules: Predictive value of ultrasound and colordoppler features [J]. Journal of Clinical Endocrinology&Metabolism, 2002, 87(5): 1941-1946.
[3] CIBAS E S, ALI S Z. The Bethesda system for reporting thyroid cytopathology [J]. Thyroid, 2009, 19(11):1159-1165.
[4] ROSSI E D, BONGIOVANNI M. Molecular cytology application on thyroid [M]//Molecular applications in cytology. Cham: Springer, 2018: 179-204.
[5] RUCHALA M, SZCZEPANEK-PARULSKA E. Novel methods of diagnostics of thyroid and parathyroid lesions [M]. Basel: MDPI, 2022.
[6] SRINIDHI C L, CIGA O, MARTEL A L. Deep neural network models for computational histopathology: Asurvey [J]. Medical Image Analysis, 2021, 67: 101813.
[7] ABDULJABBAR K, CONSORTIUM T, RAZA S E A, et al. Geospatial immune variability illuminates differential evolution of lung adenocarcinoma [J]. Nature Medicine, 2020, 26(7): 1054-1062.
[8] CORREDOR G, WANG X X, ZHOU Y, et al. Spatial architecture and arrangement of tumor-infiltrating lymphocytes for predicting likelihood of recurrence in early-stage non-small cell lung cancer [J]. Clinical Cancer Research, 2019, 25(5): 1526-1534.
[9] ZHANG X X, ZHU X F, TANG K, et al. DDTNet: A dense dual-task network for tumor-infiltrating lymphocyte detection and segmentation in histopathological images of breast cancer [J]. Medical Image Analysis, 2022, 78: 102415.
[10] GREENWALD N F, MILLER G, MOEN E, et al.Whole-cell segmentation of tissue images with human level performance using large-scale data annotation and deep learning [J]. Nature Biotechnology, 2022,40(4): 555-565.
[11] SCHAUMBERG A J, JUAREZ-NICANOR W C,CHOUDHURY S J, et al. Interpretable multimodal deep learning for real-time pan-tissue pan-disease pathology search on social media [J]. Modern Pathology, 2020, 33(11): 2169-2185.
[12] KIANI A, UYUMAZTURK B, RAJPURKAR P, et al. Impact of a deep learning assistant on the histopatho logic classification of liver cancer [J]. NPJ Digital Medicine, 2020, 3: 23.
[13] ALBARQOUNI S, BAUR C, ACHILLES F, et al. AggNet: Deep learning from crowds for mitosis detection in breast cancer histology images [J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1313-1321.
[14] SWIDERSKA-CHADAJ Z, PINCKAERS H, VAN RIJTHOVEN M, et al. Learning to detect lymphocytes in immunohistochemistry with deep learning [J]. Medical Image Analysis, 2019, 58: 101547.
[15] BOEHM K M, AHERNE E A, ELLENSON L, et al. Multimodal data integration using machine learning improves risk stratification of high-grade serous ovariancancer [J]. Nature Cancer, 2022, 3: 723-733.
[16] FU Y, JUNG A W, TORNE R V, et al. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis [J]. Nature Cancer, 2020, 1(8): 800-810.
[17] LUCAS M, JANSEN I, VAN LEEUWEN T G, et al. Deep learning-based recurrence prediction in patients with non-muscle-invasive bladder cancer [J]. European Urology Focus, 2022, 8(1): 165-172.
[18] TOKUYAMA N, SAITO A, MURAOKA R, et al. Prediction of non-muscle invasive bladder cancer recurrence using machine learning of quantitative nuclear features [J]. Modern Pathology, 2022, 35(4): 533-538.
[19] COURTIOL P, MAUSSION C, MOARII M, et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome [J]. Nature Medicine, 2019, 25(10): 1519-1525.
[20] KATHER J N, KRISAM J, CHAROENTONG P, et al. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study [J]. PLoS Medicine, 2019, 16(1): e1002730.
[21] RAO A, BARKLEY D, FRANC?A G S, et al. Exploring tissue architecture using spatial transcriptomics [J]. Nature, 2021, 596: 211-220.
[22] LEWIS S M, ASSELIN-LABAT M L, NGUYEN Q, et al. Spatial omics and multiplexed imaging to explore cancer biology [J]. Nature Methods, 2021, 18(9): 997- 1012.
[23] LU M Y, CHEN T Y, WILLIAMSON D F K, et al. AI-based pathology predicts origins for cancers of unknown primary [J]. Nature, 2021, 594(7861): 106-110.
[24] DOV D, KOVALSKY S Z, ASSAAD S, et al. Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathol ogy images [J]. Medical Image Analysis, 2021, 67: 101814.
[25] DOV D, KOVALSKY S Z, ASSAAD S, et al. Weakly supervised instance learning for thyroid malignancy prediction from whole slide cytopathol ogy images [DB/OL]. (2019-04-26) [2023-08-17].http://arxiv.org/abs/1904.12739
[26] LIN Y J, CHAO T K, KHALIL M A, et al. Deep learning fast screening approach on cytological whole slides for thyroid cancer diagnosis [J]. Cancers, 2021, 13(15): 3891.
[27] HIROKAWA M, NIIOKA H, SUZUKI A, et al. Application of deep learning as an ancillary diagnostic tool for thyroid FNA cytology [J]. Cancer Cytopathology, 2023, 131(4): 217-225.
[28] YOUN I, LEE E, YOON J H, et al. Diagnosing thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology with the deep convolutional neural network [J]. Scientific Reports, 2021, 11: 20048.
[29] CHI J N, WALIA E, BABYN P, et al. Thyroid nodule classification in ultrasound images by fine-tuning Shanghai Jiao Tong Univ. (Sci.), 2024, 29(6): 945-957 957 deep convolutional neural network [J]. Journal of Digital Imaging, 2017, 30(4): 477-486.
[30] GUAN Q, WANG Y J, DU J J, et al. Deep learning based classification of ultrasound images for thyroid nodules: A large scale of pilot study [J]. Annals of Translational Medicine, 2019, 7(7): 137.
[31] KUMAR V, WEBB J, GREGORY A, et al. Automated segmentation of thyroid nodule, gland, and cystic components from ultrasound images using deep learning [J]. IEEE Access, 2020, 8: 63482-63496.
[32] HALICEK M, LITTLE J V, WANG X, et al. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks [J]. Journal of Biomedical Optics, 2019, 24(3): 036007.
[33] ZHU Y, SANG Q, JIA S J, et al. Deep neural networks could differentiate Bethesda class III versus class IV/V/VI [J]. Annals of Translational Medicine, 2019, 7(11): 231.
[34] PANESAR A. Machine learning and AI for healthcare: Big data for improved health outcomes [M]. Berkeley: Apress, 2019.
[35] HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer [J]. Thyroid, 2016, 26(1): 1-133.
[36] BANKHEAD P, LOUGHREY M B, FERNANDEZ J A, et al. QuPath: Open source software for digital pathology image analysis [J]. Scientific Reports, 2017, 7: 16878.
[37] JIANG H, ZHOU Y N, LIN Y, et al. Deep learning for computational cytology: A survey [J]. Medical Image Analysis, 2023, 84: 102691.
[38] KAKUDO K, LIU Z, BYCHKOV A, et al. Thyroid FNA cytology: Differential diagnoses and pitfalls [M]. Singapore: Springer, 2019.
[39] KUMAR V, ABBAS AK, ASTER JC. Robbins basic pathology [M]. 10th ed. Philadelphia: Elsevier Health Sciences, 2017.
[40] KE J, SHEN Y Q, LU Y Z, et al. Quantitative analysis of abnormalities in gynecologic cytopathology with deep learning [J]. Laboratory Investigation, 2021, 101(4): 513-524.
[41] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows [C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002.
[42] WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions [C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 548-558.
[43] RIDNIK T, SHARIR G, BEN-COHEN A, et al. ML-decoder: Scalable and versatile classification head [DB/OL]. (2021-11-25) [2023-08-17]. http://arxiv.org/abs/2111.12933
[44] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks ia gradient-based localization [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626.
[45] TARVAINEN A, VALPOLA H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results [C]//31st Conference on Neural Information Processing Systems. Long Beach: NIPS, 2017: 1-10.
[46] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
[47] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[48] ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A nested U-net architecture for medical image segmentation [M]//Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer, 20018: 3-11.
[49] ISENSEE F, PETERSEN J, KLEIN A, et al. nnUNet: Self-adapting framework for U-net-based medical image segmentation [DB/OL]. (2018-09-27) [2023-08-17]. http://arxiv.org/abs/1809.10486
[50] CHEN J N, LU Y Y, YU Q H, et al. TransUNet: Transformers make strong encoders for medical image segmentation [DB/OL]. (2021-02-08) [2023-08-17]. http://arxiv.org/abs/2102.04306
[51] ZHOU Y N, ONDER O F, DOU Q, et al. CIA-Net: Robust nuclei instance segmentation with contour-aware information aggregation [M]//Information processing inmedical imaging. Cham: Springer, 2019: 682-693.
[52] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[53] XIE S N, GIRSHICK R, DOLLAR P, et al. Aggre-gated residual transformations for deep neural networks [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5987-5995.
[54] HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE,2018: 7132-7141.
[55] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
[56] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s [C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11966-11976.
[57] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [DB/OL]. (2020-10-22) [2023-08-17]. http://arxiv.org/abs/2010.11929