[1] KAMATH R S, FRASER A G, DONG Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi [J]. Nature, 2003, 421(6920):231-237.
[2] WINZELER A, SHOEMAKER D D, ASTROMOFFA, et al. Functional characterization of the S. cerevisiaegenome by gene deletion and parallel analysis [J]. TheEMBO Journal, 1999, 285(5429): 901-906.
[3] JEONG H, MASON S P, BARABáSI A L, et al.Lethality and centrality in protein networks [J]. Nature, 2001, 411(6833): 41-42,.
[4] JIMENEZ-SANCHEZ G, CHILDS B, VALLE D. Human disease genes [J]. Nature, 2001, 409(6822): 853-855.
[5] GILL N, SINGH S, ASERI T C. Computational disease gene prioritization: An appraisal [J]. Journal ofComputational Biology, 2014, 21(6): 456-465.
[6] GIAEVER G, CHU A M, NI L, et al. Functional profiling of the saccharomyces cerevisiae genome [J]. Nature,2002, 418(6896): 387-391.
[7] CULLEN L M, ARNDT G M. Genome-wide screeningfor gene function using RNAi in mammalian cells [J].Immunology and Cell Biology, 2005, 83(3): 217-223.
[8] ROEMER T, JIANG B, DAVISON J, et al. Large-scaleessential gene identification in Candida albicans andapplications to antifungal drug discovery [J]. MolecularMicrobiology, 2003, 50(1): 167-181.
[9] JEONG H, MASON S P, BARABáSI A L, et al.Lethality and centrality in protein networks [J]. Nature, 2001, 411(6833): 41-42.
[10] FREEMAN L C. Centrality in social networks conceptual clarification [J]. Social Networks, 1978, 1(3):215-239.
[11] JOY M P, BROCK A, INGBER D E, et al. Highbetweenness proteins in the yeast protein interactionnetwork [J]. Journal of Biomedicine and Biotechnology, 2005, 2005: 594674.
[12] WUCHTY S, STADLER P F. Centers of complex networks [J]. Journal of Theoretical Biology, 2003, 223(1):45-53.
[13] ESTRADA E, RODR′IGUEZ-VELáZQUEZ J A. Subgraph centrality in complex networks [J]. Physical Review E, 2005, 71(5): 056103.
[14] BONACICH P. Power and centrality: A family of measures [J]. American Journal of Sociology, 1987, 92(5):1170-1182.
[15] LI M, WANG J X, CHEN X, et al. A local average connectivity-based method for identifying essential proteins from the network level [J]. ComputationalBiology and Chemistry, 2011, 35(3): 143-150.
[16] WANG J X, LI M, WANG H, et al. Identification ofessential proteins based on edge clustering coefficient[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(4): 1070-1080.
[17] NIE T Y, GUO Z, ZHAO K, et al. Using mapping entropy to identify node centrality in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 453: 290-297.
[18] HSING M, BYLER K G, CHERKASOV A. The use ofGene Ontology terms for predicting highly-connected‘hub’ nodes in protein-protein interaction networks [J].BMC systems biology, 2008, 2(1): 80-80.
[19] LEI X J, ZHAO J, FUJITA H, et al. Predicting essential proteins based on RNA-Seq , subcellular localization and GO annotation datasets [J]. Knowledge-BasedSystems, 2018, 151: 136-148.
[20] XIAO Q H, WANG J X, PENG X Q, et al. Identifying essential proteins from active PPI networks constructed with dynamic gene expression [J]. BMC Genomics, 2015, 16(Suppl3): S1.
[21] NEPUSZ T, YU H Y, PACCANARO A. Detectingoverlapping protein complexes in protein-protein interaction networks [J]. Nature Methods, 2012, 9(5): 471-472.
[22] ZHANG W, XU J, LI X, et al. A new method for identifying essential proteins by measuring co-expressionand functional similarity [J]. IEEE Transactions onNanobioscience, 2016, 15(8): 939-945.
[23] LI M, LU Y, NIU Z B, et al. United complex centrality for identification of essential proteins from PPI networks [J]. IEEE/ACM Transactions on ComputationalBiology and Bioinformatics, 2017, 14(2): 370-380.
[24] LUO J, QI Y, Identification of essential proteins basedon a new combination of local interaction densityand protein complexes [J]. PLoS ONE, 2015, 10(6):e0131418.
[25] LI M, ZHANG H H, WANG J X, et al. A new essentialprotein discovery method based on the integration ofprotein-protein interaction and gene expression data[J]. BMC Systems Biology, 2012, 6: 15.
[26] TANG X W, WANG J X, ZHONG J C, et al. Predicting essential proteins based on weighted degreecentrality [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(2): 407-418.
[27] LUO J, MA L. A new integration-centric algorithm ofidentifying essential proteins based on topology structure of protein-protein interaction network and complex information [J]. Current Bioinformatics, 2013,8(3): 380-385.
[28] LU P, YU J, A mixed clustering coefficient centrality for identifying essential proteins [J]. InternationalJournal of Modern Physics B, 2020, 34(10): 5-9.
[29] LEI X, YANG X, FUJITA H. Random walk basedmethod to identify essential proteins by integratingnetwork topology and biological characteristics [J].Knowledge Based Systems, 2019, 167: 53-67.
[30] LEI X J, YANG X Q, WU F X. Artificial fish swarmoptimization based method to identify essential proteins [J]. IEEE/ACM Transactions on ComputationalBiology and Bioinformatics, 2020, 17(2): 495-505.
[31] ZENG M, LI M, WU F X, et al. DeepEP: A deeplearning framework for identifying essential proteins[J]. BMC Bioinformatics, 2019, 20(Suppl16): 506.
[32] TZENG G, HUANG J. Multiple attribute decisionmaking: Methods and applications [M]// Boca Raton:CRC Press, 2011.
[33] DENG Y, CHAN F T S, WU Y, et al. A new linguistic MCDM method based on multiple-criterion data fusion [J]. Expert Systems with Applications, 2011, 38(6):6985-6993.
[34] ABO-SINNA M A, AMER A H, IBRAHIM A S. Extensions of TOPSIS for large scale muti-objective nonliner programming problems with block angular structure [J]. Applied Mathematical Modelling, 2008, 32(3):292-302.
[35] LEI X J, ZHAO J, FUJITA H, et al. Predicting Essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets [J]. Knowledge-BasedSystems, 2018, 151: 136-148.
[36] XENARIOS I, FERNANDEZ E, SALWINSKI L, etal. DIP: The database of interacting proteins: 2001update [J]. Nucleic Acids Research, 2001, 29(1): 239-241.
[37] MEWES H W, FRISHMAN D, MAYER K F X, etal. MIPS: analysis and annotation of proteins fromwhole genomes in 2005 [J]. Nucleic Acids Research,2006, 34(suppl 1): D169-D172.
[38] KROGAN N J, CAGNEY G, YU H Y, et al. Globallandscape of protein complexes in the yeast Saccharomyces cerevisiae [J]. Nature, 2006, 440(7084): 637-643.
[39] STARK C, BREITKREUTZ B J, CHATRARYAMONTRI A, et al. The BioGRID InteractionDatabase: 2011 update [J]. Nucleic Acids Research,2010, 39(suppl 1): D698-D704.
[40] FRIEDEL C C, KRUMSIEK J, ZIMMER R, et al.Bootstrapping the interactome: Unsupervised identifi-cation of protein complexes in yeast [M]// Research incomputational molecular biology. Berlin, Heidelberg:Springer, 2008: 3-16.
[41] PU S Y, VLASBLOM J, EMILI A, et al. Identifying functional modules in the physical interactome ofSaccharomyces cerevisiae [J]. Proteomics, 2007, 7(6):944-960.
[42] PU S Y, WONG J, TURNER B, et al. Up-to-date catalogues of yeast protein complexes [J]. Nucleic AcidsResearch, 2008, 37(3): 825-831.
[43] CHERRY J M, ADLER C, BALL C, et al. SGD: Saccharomyces genome database [J]. Nucleic Acids Research, 1998, 26(1): 73-79.
[44] ZHANG R, LIN Y. DEG 5.0, a database of essentialgenes in both prokaryotes and eukaryotes [J]. NucleicAcids Research, 2008, 37(suppl 1): D455-D458.
[45] WINZELER E A, SHOEMAKER D D, ASTROMOFFA, et al. Functional characterization of the S. cerevisiaegenome by gene deletion and parallel analysis [J]. Science, 1999, 285(5429): 901-906.
[46] BINDER J X, PLETSCHER-FRANKILD S,TSAFOU K, et al. COMPARTMENTS: Unificationand visualization of protein subcellular localizationevidence [J]. Database, 2014, 2014: bau012.
[47] TU B P, KUDLICKI A, ROWICKA M, et al. Logicof the yeast metabolic cycle: Temporal compartmentalization of cellular processes [J]. Science, 2005,310(5751): 1152-1158.
[48] HOLMAN A G, DAVIS P J, FOSTER J M, Computational prediction of essential genes in an unculturableendosymbiotic bacterium, Wolbachia of Brugia malayi[J]. BMC Microbiology, 2009, 9: 243.