Special Issue on Advanced Technologies for Medical Robotics

Progress in Force-Sensing Techniques for Surgical Robots

  • GAO Hongyan1 ,
  • 2(高红岩),AI Xiaojie1 ,
  • 2(艾孝杰),SUN Zhenglong3(孙正隆),CHEN Weidong1 ,
  • 2(陈卫东),GAO Anzhu1 ,
  • 2*(高安柱)
Expand
  • (1. Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China;2. Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China;3. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China)

Received date: 2022-12-08

  Revised date: 2023-01-31

  Accepted date: 2023-05-28

  Online published: 2023-05-22

Abstract

Force sensing is vital for situational awareness and safe interaction during minimally invasive surgery. Consequently, surgical robots with integrated force-sensing techniques ensure precise and safe operations. Over the past few decades, there has been considerable progress in force-sensing techniques for surgical robots. This review summarizes the existing electrically- and optically-based force sensors for surgical robots, including piezoresistive, piezoelectric, capacitive, intensity/phase-modulated, and fiber Bragg gratings. Their principles, applications, advantages, and limitations are also discussed. Finally, we summarize our conclusions regarding state-of-the-art force-sensing technologies for surgical robotics.

Cite this article

GAO Hongyan1 , 2(高红岩),AI Xiaojie1 , 2(艾孝杰),SUN Zhenglong3(孙正隆),CHEN Weidong1 , 2(陈卫东),GAO Anzhu1 , 2*(高安柱) . Progress in Force-Sensing Techniques for Surgical Robots[J]. Journal of Shanghai Jiaotong University(Science), 2023 , 28(3) : 370 -381 . DOI: 10.1007/s12204-023-2607-x

References

[1]PALEP J. Robotic assisted minimally invasive surgery [J]. Journal of Minimal Access Surgery, 2009, 5(1): 1. [2]JAFFRAY B. Minimally invasive surgery [J]. Archives of Disease in Childhood, 2005, 90(5): 537-542. [3]ORTMAIER T, DEML B, KU¨ BLER B, et al. Robot assisted force feedback surgery [M]//Advances in telerobotics. Berlin, Heidelberg: Springer, 2007: 361-379. [4]ROSEN J, HANNAFORD B, MACFARLANE M P, et al. Force controlled and teleoperated endoscopic grasper for minimally invasive surgery: Experimental performance evaluation [J]. IEEE Transactions on Bio-Medical Engineering, 1999, 46(10): 1212-1221. [5]HE X C, HANDA J, GEHLBACH P, et al. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery [J]. IEEE Transactions on Bio-Medical Engineering, 2014, 61(2): 522-534. [6]GAO A Z, ZHOU Y Y, CAO L, et al. Fiber Bragg grating-based triaxial force sensor with parallel flexure hinges [J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8215-8223. [7]AKINYEMI T O, OMISORE O M, DUAN W K, et al. Fiber Bragg grating-based force sensing in robot-assisted cardiac interventions: A review [J]. IEEE Sensors Journal, 2021, 21(9): 10317-10331. [8]MENCIASSI A, EISINBERG A, SCALARI G, et al. Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery [C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation. Seoul: IEEE, 2001: 626-631. [9]CUTLER N, BALICKI M, FINKELSTEIN M, et al. Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery [J]. Investigative Ophthalmology & Visual Science, 2013, 54(2): 1316-1324. [10]LI X, LIN J Z, PANG Y, et al. Three-dimensional force sensor based on fiber Bragg grating for medical puncture robot [J]. Photonics, 2022, 9(9): 630. [11]KIM C, LEE C H. Development of a 6-DoF FBG force– moment sensor for a haptic interface with minimally invasive robotic surgery [J].Journal of Mechanical Science and Technology, 2016, 30(8): 3705-3712. [12]HE X C, BALICKI M, GEHLBACH P, et al. A multifunction force sensing instrument for variable admittance robot control in retinal microsurgery [C]//2014 IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 1411-1418. [13]BANDARI N, DARGAHI J, PACKIRISAMY M. Tactile sensors for minimally invasive surgery: A review of the state-of-the-art, applications, and perspectives [J]. IEEE Access, 2019, 8: 7682-7708. [14]BICCHI A, CANEPA G, DE ROSSI D, et al. A sensor-based minimally invasive surgery tool for detecting tissutal elastic properties [C]//Proceedings of IEEE International Conference on Robotics and Automation. Minneapolis: IEEE, 1996: 884-888. [15]PUANGMALI P, ALTHOEFER K, SENEVIRATNE L D, et al. State-of-the-art in force and tactile sensing for minimally invasive surgery [J]. IEEE Sensors Journal, 2008, 8(4): 371-381. [16]TREJOS A L, PATEL R V, NAISH M D. Force sensing and its application in minimally invasive surgery and therapy: A survey[J]. Proceedings of the Institution of Mechanical Engineers, Part C : Journal of Mechanical Engineering Science, 2010, 224(7): 1435-1454. [17]HELMUS M N, GIBBONS D F, CEBON D. Bio-compatibility: Meeting a key functional requirement of next-generation medical devices [J]. Toxicologic Pathology, 2008, 36(1): 70-80. [18]DEMPSEY D J, THIRUCOTE R R. Sterilization of medical devices: A review [J]. Journal of Biomaterials Applications, 1989, 3(3): 454-523. [19]TIWANA M I, REDMOND S J, LOVELL N H. A review of tactile sensing technologies with applications in biomedical engineering [J]. Sensors and Actuators A: Physical, 2012, 179: 17-31. [20]OKAMURA A M. Haptic feedback in robot-assisted minimally invasive surgery [J]. Current Opinion in Urology, 2009, 19(1): 102-107. [21]WINDOW A L. Strain gauge technology [M]. 2nd ed. London: Springer, 1992. [22]Svoboda J A, Dorf R C. Introduction to electric circuits. [M]. 9th ed. Hoboken: Wiley, 2014. [23]ZAREINIA K, MADDAHI Y, GAN L S, et al. A force-sensing bipolar forceps to quantify tool–tissue interaction forces in microsurgery [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2365-2377. [24]TREJOS A L, ESCOTO A, NAISH M D, et al. Design and evaluation of a sterilizable force sensing instrument for minimally invasive surgery [J]. IEEE Sensors Journal, 2017, 17(13): 3983-3993. [25]BAKI P, SZE′KELY G, KO′SA G. Miniature tri-axial force sensor for feedback in minimally invasive surgery [C]//2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome: IEEE, 2012: 805-810. [26]VALDASTRI P, HOUSTON K, MENCIASSI A, et al. Miniaturized cutting tool with triaxial force sensing capabilities for minimally invasive surgery [J]. Journal of Medical Devices, 2007, 1(3): 206-211. [27]PARK W T, KOTLANKA R K, LOU L, et al. MEMS tri-axial force sensor with an integrated mechanical stopper for guidewire applications [J]. Microsystem Technologies, 2013, 19(7): 1005-1015. [28]BAKI P, SZE′KELY G, KO′SA G. Design and characterization of a novel, robust, tri-axial force sensor [J]. Sensors and Actuators A: Physical, 2013, 192: 101-110. [29]BENFIELD D, YUE S C, LOU E, et al. Design and calibration of a six-axis MEMS sensor array for use in scoliosis correction surgery [J]. Journal of Micromechanics and Microengineering, 2014, 24(8): 085008. [30]TANAKA Y, TANAKA M, CHONAN S. Development of a sensor system for collecting tactile information [J]. Microsystem Technologies, 2007, 13(8): 1005-1013. [31]XIN Y, TIAN H Y, GUO C, et al. PVDF tactile sensors for detecting contact force and slip: A review [J]. Ferroelectrics, 2016, 504(1): 31-45. [32]QASAIMEH M A, SOKHANVAR S, DARGAHI J, et al. PVDF-based microfabricated tactile sensor for minimally invasive surgery [J]. Journal of Microelectromechanical Systems, 2009, 18(1): 195-207. [33]SOKHANVAR S, PACKIRISAMY M, DARGAHI J. A multifunctional PVDF-based tactile sensor for minimally invasive surgery [J]. Smart Materials and Structures, 2007, 16(4): 989-998. [34]SHARMA S, AGUILERA R, RAO J Y, et al. Piezoelectric needle sensor reveals mechanical heterogeneity in human thyroid tissue lesions [J]. Scientific Reports, 2019, 9(1): 1-9. [35]CHUANG C H, LI T H, CHOU I C, et al. Piezoelectric tactile sensor for submucosal tumor detection in endoscopy [J]. Sensors and Actuators A: Physical, 2016, 244: 299-309. [36]SOKHANVAR S, PACKIRISAMY M, DARGAHI J. MEMS endoscopic tactile sensor: Toward in-situ and in-vivo tissue softness characterization [J]. IEEE Sensors Journal, 2009, 9(12): 1679-1687. [37]ZHANG L, JU F, CAO Y F, et al. A tactile sensor for measuring hardness of soft tissue with applications to minimally invasive surgery [J]. Sensors and Actuators A: Physical, 2017, 266: 197-204. [38]BEYELER F, MUNTWYLER S, NELSON B J. A six-axis MEMS force–torque sensor with micro-Newton and nano-newtonmeter resolution [J]. Journal of Microelectromechanical Systems, 2009, 18(2): 433-441. [39]LEE D H, KIM U, GULREZ T, et al. A laparoscopic grasping tool with force sensing capability [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 130-141. [40]NAGATOMO T, MIKI N. Three-axis capacitive force sensor with liquid metal electrodes for endoscopic palpation [J]. Micro & Nano Letters, 2017, 12(8): 564-568. [41]PAYDAR O H, WOTTAWA C R, FAN R E, et al. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery [C]//2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego: IEEE, 2012: 2355-2358. [42]LV C H, WANG S X, SHI C Y. A high-precision and miniature fiber Bragg grating-based force sensor for tissue palpation during minimally invasive surgery [J]. Annals of Biomedical Engineering, 2020, 48(2): 669-681. [43]POLYGERINOS P, SENEVIRATNE L D, RAZAVI R, et al. Triaxial catheter-tip force sensor for MRI-guided cardiac procedures [J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 386-396. [44]FONTANELLI G A, BUONOCORE L R, FICU-CIELLO F, et al. An external force sensing system for minimally invasive robotic surgery [J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1543-1554. [45]SU H, IORDACHITA I I, TOKUDA J, et al. Fiber optic force sensors for MRI-guided interventions and rehabilitation: A review [J]. IEEE Sensors Journal, 2017, 17(7): 1952-1963. [46]GUPTA P K, JENSEN P S, DE JUAN E Jr. Surgical forces and tactile perception during retinal microsurgery [M]//Medical image computing and computer-assisted intervention – MICCAI’99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999: 1218-1225. [47]SHI C Y, LI T L, REN H L. A millinewton resolution fiber Bragg grating-based catheter two-dimensional distal force sensor for cardiac catheterization [J]. IEEE Sensors Journal, 2018, 18(4): 1539-1546. [48]GONENC B, CHAMANI A, HANDA J, et al. 3-DOF force-sensing motorized micro-forceps for robot-assisted vitreoretinal surgery [J]. IEEE Sensors Journal, 2017, 17(11): 3526-3541. [49]SHI C Y, LI M, LV C H, et al. A high-sensitivity fiber Bragg grating-based distal force sensor for laparoscopic surgery [J]. IEEE Sensors Journal, 2020, 20(5): 2467-2475. [50]WU Z C, GAO A Z, LIU N, et al. FBG-based triaxial force sensor integrated with an eccentrically configured imaging probe for endoluminal optical biopsy [C]//2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 1625-1631. [51]MU¨ LLER M S, HOFFMANN L, CHRISTOPHER BUCK T, et al. Fiber Bragg grating-based force-torque sensor with six degrees of freedom [J]. International Journal of Optomechatronics, 2009, 3(3): 201-214. [52]GAO A Z, LIU N, ZHANG H J, et al. Spiral FBG sensors-based contact detection for confocal laser endomicroscopy [J]. Biosensors and Bioelectronics, 2020, 170: 112653. [53]LI T L, KING N K K, REN H L. Disposable FBG-based tridirectional force/torque sensor for aspiration instruments in neurosurgery [J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 3236-3247. [54]PENNY M R, HUFFORD K A, NATHAN M, et al. Dynamic control of surgical instruments in a surgical robotic system: US 11234781B2 [P]. 2022-02-01. [55]SPINELLI A, DAVID G, GIDARO S, et al. First experience in colorectal surgery with a new robotic platform with haptic feedback [J]. Colorectal Disease, 2018. 20(3): 228-235. [56]ATAY S, HUFFORD K A, SCHNUR P W, ET AL. Haptic user interface for robotically controlled surgical instruments: US 2022061942A1 [P]. 2022-03-03. [57]ALLETTI S G, ROSSITTO C, CIANCI S, et al. The Senhance? surgical robotic system (“Senhance”) for total hysterectomy in obese patients: A pilot study [J]. Journal of Robotic Surgery, 2018, 12(2): 229-234. [58]PAPPAS T, FERNANDO A, NATHAN M. Senhance surgical system: Robotic-assisted digital laparoscopy for abdominal, pelvic, and thoracoscopic procedures [M]//Handbook of robotic and image-guided surgery. Amsterdam: Elsevier, 2020: 1-14. [59]KRUPA A, MOREL G, DE MATHELIN M. Achieving high-precision laparoscopic manipulation through adaptive force control [J]. Advanced Robotics, 2004, 18(9): 905-926. [60]BALICKI M, UNERI A, IORDACHITA I, et al. Microforce sensing in robot assisted membrane peeling for vitreoretinal surgery [M]//Medical image computing and computer-assisted intervention – MICCAI 2010. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 303-310. [61]KUMAR R, BERKELMAN P, GUPTA P, et al. Preliminary experiments in cooperative human/robot force control for robot assisted microsurgical manipulation [C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings. San Francisco: IEEE, 2000: 610-617. [62]SO J H, SOBUCKI S, SZEWCZYK J, et al. Shared control schemes for middle ear surgery [J]. Frontiers in Robotics and AI, 2022, 9: 824716.
Outlines

/