[1] LOW K H, HU T J, MOHAMMED S, et al. Perspectives on biologically inspired hybrid and multi-modal locomotion [J]. Bioinspiration & Biomimetics, 2015, 10(2): 020301.
[2] KING R S. BiLBIQ: A biologically inspired robot with walking and rolling locomotion [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
[3] SASTRA J, CHITTA S, YIM M. Dynamic rolling for a modular loop robot [J]. The International Journal of Robotics Research, 2009, 28(6): 758-773.
[4] CHOWDHURYA R, SOH G S, FOONG S H, et al. Experiments in robust path following control of a rolling and spinning robot on outdoor surfaces [J]. Robotics and Autonomous Systems, 2018, 106: 140-151.
[5] MASUDA Y, ISHIKAWA M. Development of a deformation-driven rolling robot with a soft outer shell [C]//2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich: IEEE, 2017: 1651-1656.
[6] PARK S, PARK E, YIM M, et al. Optimization-based nonimpact rolling locomotion of a variable geometry truss [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 747-752.
[7] WANG X L, JIN H Z, ZHU Y H, et al. Serpenoid polygonal rolling for chain-type modular robots: A study of modeling, pattern switching and application [J]. Robotics and Computer-Integrated Manufacturing, 2016, 39: 56-67.
[8] WANG Y J, WU C L, YU L Q, et al. Trajectory planning of a rolling robot of closed five-bow-shaped-bar linkage [J]. Robotics and Computer-Integrated Manufacturing, 2018, 53: 81-92.
[9] WANG Y J, WU C L, YU L Q, et al. Dynamics of a rolling robot of closed five-arc-shaped-bar linkage [J]. Mechanism and Machine Theory, 2018, 121: 75-91.
[10] TIAN Y B, YAO Y A, DING W, et al. Design and locomotion analysis of a novel deformable mobile robot with worm-like, self-crossing and rolling motion [J]. Robotica, 2016, 34(9): 1961-1978. [11] TIAN Y B, ZHANG D, YAO Y A, et al. A reconfigurable multi-mode mobile parallel robot [J]. Mechanism and Machine Theory, 2017, 111: 39-65.
[12] WEI X Z, TIAN Y B, WEN S S. Design and locomotion analysis of a novel modular rolling robot [J]. Mechanism and Machine Theory, 2019, 133: 23-43.
[13] YIM M, ROUFAS K, DUFF D, et al. Modular reconfigurable robots in space applications [J]. Autonomous Robots, 2003, 14(2/3): 225-237.
[14] CURTIS S, BRANDT M, BOWERS G, et al. Tetrahedral robotics for space exploration [C]//2007 IEEE Aerospace Conference. Big Sky: IEEE, 2007: 1-9.
[15] GOULDING M. Circuits controlling vertebrate locomotion: Moving in a new direction [J]. Nature Reviews Neuroscience, 2009, 10(7): 507-518.
[16] GOSWAMI A, VADAKKEPAT P. Humanoid robotics: A reference [M]. Dordrecht: Springer, 2019: 1099-1134.
[17] VAN DER NOOT N, IJSPEERT A J, RONSSE R. Bio-inspired controller achieving forward speed modulation with a 3D bipedal walker [J]. The International Journal of Robotics Research, 2018, 37(1): 168-196.
[18] YU J Z, CHEN S F, WU Z X, et al. Energy analysis of a CPG-controlled miniature robotic fish [J]. Journal of Bionic Engineering, 2018, 15(2): 260-269.
[19] SPR¨OWITZ A, TULEU A, VESPIGNANI M, et al. Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot [J]. The International Journal of Robotics Research, 2013, 32(8): 932-950.
[20] COLASANTO L, VAN DER NOOT N, IJSPEERT A J. Bio-inspired walking for humanoid robots using feet with human-like compliance and neuromuscular control [C]//2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). Seoul: IEEE, 2015: 26-32.
[21] HUTTER M, GEHRING C, BLOESCH M, et al. Starleth: a compliant quadrupedal robot for fast, efficient, and versatile locomotion [M]//Adaptive mobile robotics. Singapore: World Scientific, 2012: 483-490.
[22] HUTTER M, GEHRING C, LAUBER A, et al. ANYmal - toward legged robots for harsh environments [J]. Advanced Robotics, 2017, 31(17): 918-931.
[23] KAKOGAWA A, JEON S, MA S G. Stiffness design of a resonance-based planar snake robot with parallel elastic actuators [J]. IEEE Robotics and Automation Letters, 2018, 3(2): 1284-1291.
[24] IRMSCHER C, WOSCHKE E, MAY E, et al. Design, optimisation and testing of a compact, inexpensive elastic element for series elastic actuators [J]. Medical Engineering & Physics, 2018, 52: 84-89.
[25] DOS SANTOS W M, CAURIN G A P, SIQUEIRA A A G. Design and control of an active knee orthosis driven by a rotary Series Elastic Actuator [J]. Control Engineering Practice, 2017, 58: 307-318. [26] TSAGARAKIS N G, MORFEY S, MEDRANO CERDA G, et al. COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control [C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 673-678.
[27] SHI R D, ZHANG X L, YAO Y A. A CPG-based control method for the multi-mode locomotion of a desert spider robot [J]. Robot, 2018, 40(2): 146-157(in Chinese).
[28] IJSPEERT A J. Central pattern generators for locomotion control in animals and robots: A review [J]. Neural Networks, 2008, 21(4): 642-653.
[29] MORO F L, SPR¨OWITZ A, TULEU A, et al. Horselike walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot [J]. Biological Cybernetics, 2013, 107(3): 309- 320.
[30] ZHONG G L, CHEN L, JIAO Z D, et al. Locomotion control and gait planning of a novel hexapod robot using biomimetic neurons [J]. IEEE Transactions on Control Systems Technology, 2018, 26(2): 624-636.