Medicine-Engineering Interdisciplinary Research

Piezoelectric-Based Smart Bone Plate for Fracture Healing Progress Monitoring

Expand
  • (a. School of Instrumentation Science and Optoelectronic Engineering; b. Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing 100083, China)

Received date: 2020-06-03

  Online published: 2022-08-11

Abstract

Fracture healing progress monitoring techniques attract global research attention due to the importance of selecting the timing of removing the fixation device. To this end, in this research, we present a piezoelectric- based smart internal fixation device, in which a piezoelectric sandwich structure is laminated to the surface of a bone plate. In the content, we explain the reasons for utilizing piezoelectric films, elaborate the mechanism of fracture monitoring, and introduce the mechanical parameters of the sensor. The simulation and experimental results show that the electrical output of the device is associated with the elastic modulus of the filler between the tested broken bones when the working load is maintained, indicating that the bone recovery progress could be successfully detected by the developed technique.

Cite this article

GAO Zihang (高梓航), WANG Xin (王 鑫) ZHAO Yifan (赵一帆), JIN Zhehui (金哲慧), WANG Gang (王 刚), GAO Shuo∗ (高 硕) . Piezoelectric-Based Smart Bone Plate for Fracture Healing Progress Monitoring[J]. Journal of Shanghai Jiaotong University(Science), 2022 , 27(4) : 561 -569 . DOI: 10.1007/s12204-022-2417-6

References

[1] PROTOPAPPAS V C, BAGA D A, FOTIADIS D I, etal. An ultrasound wearable system for the monitoringand acceleration of fracture healing in long bones [J].IEEE Transactions on Biomedical Engineering, 2005,52(9): 1597-1608. [2] BLOKHUIS T J, DEN BOER F C, BRAMER J AM, et al. Evaluation of strength of healing fractureswith dual energy Xray absorptiometry [J]. Clinical Or-thopaedics and Related Research, 2000, 380: 260-268. [3] ESTERHAI J, ALA VI A, MANDELL G A, et al.Sequential technetium-99m/gallium-67 scintigraphicevaluation of subclinical osteomyelitis complicatingfracture nonunion [J]. Journal of Orthopaedic Re-search, 1985, 3(2): 219-225. [4] DEN BOER F C, BRAMER J A M, PATKA P,et al. Quantification of fracture healing with three-dimensional computed tomography [J]. Archives of Or-thopaedic and Trauma Surgery, 1998, 117(6/7): 345-350. [5] GERSHUNI D H, SKYHAR M J, THOMPSON B, etal. A comparison of conventional radiography and com-puted tomography in the evaluation of spiral fracturesof the tibia [J]. The Journal of Bone and Joint SurgeryAmerican Volume, 1985, 67(9): 1388-1395. [6] NAKATSUCHI Y, TSUCHIKANE A, NOMURA A.Assessment of fracture healing in the tibia using theimpulse response method [J]. Journal of OrthopaedicTrauma, 1996, 10(1): 50-62. [7] NIKIFORIDIS G, BEZERIANOS A, DIMAROGO-NAS A, et al. Monitoring of fracture healing by lateraland axial vibration analysis [J]. Journal of Biomechan-ics, 1990, 23(4): 323-330. [8] CLAES L E, HEIGELE C A. Magnitudes of local stressand strain along bony surfaces predict the course andtype of fracture healing [J]. Journal of Biomechanics,1999, 32(3): 255-266. [9] CLAES L E, CUNNINGHAM J L. Monitoring the me-chanical properties of healing bone [J]. Clinical Or-thopaedics and Related Research, 2009, 467(8): 1964-1971. [10] HAMMER R R, HAMMERBY S, LINDHOLM B. Ac-curacy of radiologic assessment of tibial shaft fractureunion in humans [J]. Clinical Orthopaedics and RelatedResearch, 1985(199): 233-238. [11] WHELAN D B, BHANDARI M, STEPHEN D, et al.Development of the radiographic union score for tib-ial fractures for the assessment of tibial fracture heal-ing after intramedullary fixation [J]. The Journal ofTrauma and Acute Care Surgery, 2010, 68(3): 629-632. [12] LOWET G, V AN DER PERRE G. Ultrasound velocitymeasurement in long bones: Measurement method andsimulation of ultrasound wave propagation [J]. Journalof Biomechanics, 1996, 29(10): 1255-1262. [13] MIˇSI ′C D , Z D R A V K O V I ′C M , M I T K O V I ′C M , e t a l .Real-time monitoring of bone fracture recovery by us-ing aware, sensing, smart, and active orthopedic de-vices [J]. IEEE Internet of Things Journal, 2018, 5(6):4466-4473. [14] WOLYNSKI J G, SUTHERLAND C J, DEMIR H V,et al. Utilizing multiple BioMEMS sensors to moni-tor orthopaedic strain and predict bone fracture heal-ing [J]. Journal of Orthopaedic Research, 2019, 37(9):1873-1880. [15] GRASA J, G óMEZ-BENITO M J, GONZ áLEZ-TORRES L A, et al. Monitoring in vivo load transmis-s i o n t h r o u g h a n e x t e r n a l fixator [J]. Annals of Biomed-ical Engineering, 2010, 38(3): 605-612. [16] BORCHANI W, AONO K, LAJNEF N, et al. Mon-itoring of postoperative bone healing using smarttrauma-fixation device with integrated self-poweredpiezo-floating-gate sensors [J]. IEEE Transactions onBiomedical Engineering, 2016, 63(7): 1463-1472. [17] BHALLA S, BAJAJ S. Bone characterization us-ing piezotransducers as biomedical sensors [J]. Strain,2008, 44(6): 475-478. [18] MCGIL VRAY K C, UNAL E, TROYER K L, et al.Implantable microelectromechanical sensors for diag-nostic monitoring and post-surgical prediction of bonefracture healing [J]. Journal of Orthopaedic Research,2015, 33(10): 1439-1446. [19] MELIK R, PERKGOZ N K, UNAL E, et al. Bio-implantable passive on-chip RF-MEMS strain sensingresonators for orthopaedic applications [J]. Journal ofMicromechanics and Microengineering, 2008, 18(11):115017. [20] SEIDE K, ALJUDAIBI M, WEINRICH N, et al. Tele-metric assessment of bone healing with an instru-mented internal fixator: A preliminary study [J]. TheJournal of Bone and Joint Surgery British Volume,2012, 94(3): 398-404. [21] ALF ARO J F, WEISS L E, CAMPBELL P G, etal. BioImplantable bone stress sensor [C]//2005 IEEEEngineering in Medicine and Biology 27th AnnualConference. Shanghai, China: IEEE, 2006, 518-521. [22] OTERO J, FELIS I, HERRERO A, et al. Bragg peak localization with piezoelectric sensors for proton ther-apy treatment [J]. Sensors, 2020, 20(10): 2987. [23] SAKATA K, SUEMATSU K, TAKESHIGE N, etal. Novel method of intraoperative ocular movementmonitoring using a piezoelectric device: Experimentalstudy of ocular motor nerve activating piezoelectric potentials (OMNAPP) and clinical application for skullbase surgeries [J]. Neurosurgical Review, 2020, 43(1):185-193. [24] W ADE R, RICHARDSON J. Outcome in fracturehealing: A review [J]. Injury, 2001, 32(2): 109-114. [25] ZHU P, HUANG G, ZHANG B, et al. Assessmentof fracture healing properties of lovastatin loadednanoparticles: Preclinical study in rat model [J]. ActaBiochimica Polonica, 2019, 66(1): 71-76. [26] EBRAHEIM N A, SA VOLAINE E R, PATEL A, et al.Assessment of tibial fracture union by 35-45 degrees in-ternal oblique radiographs [J]. Journal of OrthopaedicTrauma, 1991, 5(3): 349-350. [27] BHANDARI M, GUYATT G H, SWIONTKOWSKI MF, et al. A lack of consensus in the assessment of frac-ture healing among orthopaedic surgeons [J]. Journalof Orthopaedic Trauma, 2002, 16(8): 562-566. [28] PROTOPAPPAS V C, V A VV A M G, FOTIADIS D I,et al. Ultrasonic monitoring of bone fracture healing[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control, 2008, 55(6): 1243-1255. [29] MOLL J, KEXEL C, MILANCHIAN H, et al. Ultra-sound bone fracture sensing and data communication:Experimental results in a pig limb sample [J]. Ultra-sound in Medicine & Biology, 2019, 45(2): 605-611. [30] POTSIKA V T, GRIV AS K N, GORTSAS T, et al.Boundary element simulation of ultrasonic backscat-tering during the fracture healing process [C]//201638th Annual International Conference of the IEEE En-gineering in Medicine and Biology Society (EMBC ).Orlando: IEEE, 2016: 2913-2916. [31] FOLDES A J, RIMON A, KEINAN D D, et al. Quan-titative ultrasound of the tibia: A novel approach forassessment of bone status [J]. Bone, 1995, 17(4): 363-367. [32] CHURCHES A E, TANNER K E, HARRIS J D.The Oxford External Fixator: Fixator stiffness andthe effects of bone pin loosening [J]. Engineering inMedicine, 1985, 14(1): 3-11. [33] CHEHADE M J, POHL A P, PEARCY M J, et al.Clinical implications of stiffness and strength changesin fracture healing [J]. The Journal of Bone and JointSurgery British Volume, 1997, 79(1): 9-12. [34] DWYER J S M, OWEN P J, EV ANS G A, et al. Stiff-ness measurements to assess healing during leg length-ening: A preliminary report [J]. The Journal of Boneand Joint Surgery. British Volume, 1996, 78(2): 286-289. [35] KAY P R, ROSS E R S, POWELL E S. Developmentand clinical application of an external fixator moni-toring system [J]. Journal of Biomedical Engineering,1989, 11(3): 240-244. [36] RICHARDSON J B, CUNNINGHAM J L, GOOD-SHIP A E, et al. Measuring stiffness can define healingof tibial fractures [J]. The Journal of Bone and JointSurgery British Volume, 1994, 76(3): 389-394. [37] BERGMANN G, DEURETZBACHER G, HELLERM, et al. Hip contact forces and gait patterns fromroutine activities [J]. Journal of Biomechanics, 2001,34(7): 859-871. [38] ARDESHIRYLAJIMI A, GHADERIAN S M H, OM-RANI M D, et al. Biomimetic scaffold containingPVDF nanofibers with sustained TGF-β release incombination with AT-MSCs for bladder tissue engi-neering [J]. Gene, 2018, 676: 195-201. [39] KLINK C D, JUNGE K, BINNEB?SEL M, et al.Comparison of long-term biocompability of PVDF andPP meshes [J]. Journal of Investigative Surgery, 2011,24(6): 292-299. [40] GIOL E D, V AN VLIERBERGHE S, UNGER R E,et al. Biomimetic strategy towards gelatin coatings onPET. Effect of protocol on coating stability and cell-interactive properties [J]. Journal of Materials Chem-istry B, 2019, 7(8): 1258-1269. [41] KLIMIEC E, ZARASKA W, KUCZY ′NSKI S, etal. The investigation of electret film durability inpolyethylene terephthalate (PET) from a certain an-gle of their application as pressure sensors [J]. AppliedMechanics and Materials, 2011, 110: 1252-1258. [42] GUO Y, ZHONG M, F ANG Z, et al. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing [J].Nano Letters, 2019, 19(2): 1143-1150.
Outlines

/