[1] YUH J. Design and control of autonomous underwater robots: A survey [J]. Autonomous Robots, 2000, 8(1): 7-24.
[2] YOERGER D, SLOTINE J. Robust trajectory control of underwater vehicles [J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 462-470.
[3] ISHAQUE K, ABDULLAH S S, AYOB S M, et al. A simplified approach to design fuzzy logic controller for an underwater vehicle [J]. Ocean Engineering, 2011, 38(1): 271-284.
[4] LEABOURNE K N, ROCK S M, FLEISCHER S D, et al. Station keeping of an ROV using vision technology [C]//Oceans’97. MTS/IEEE Conference Proceedings. Halifax, NS: IEEE, 1997: 634-640.
[5] YUH J. A neural net controller for underwater robotic vehicles [J]. IEEE Journal of Oceanic Engineering, 1990, 15(3): 161-166.
[6] QIAN Y, FENG Z P, BI A Y, et al. T-S fuzzy modelbased depth control of underwater vehicles [J]. Jour- nal of Shanghai Jiao Tong University (Science), 2020, 25(3): 315-324.
[7] W ANG J S, LEE C S G, YUH J. Self-adaptive neurofuzzy systems with fast parameter learning for autonomous underwater vehicle control [C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. S a n Francisco, CA: IEEE, 2000: 3861-3866.
[8] KIM T W, YUH J. A novel neuro-fuzzy controller for autonomous underwater vehicles [C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation. Seoul: IEEE, 2001: 23502355.
[9] ˇSABANOVIC A. Variable structure systems with sliding modes in motion control — A survey [J]. IEEE Transactions on Industrial Informatics, 2011, 7(2): 212-223.
[10] UTKIN V I. Sliding modes in control and optimization [M]. Berlin, Heidelberg: Springer, 1992.
[11] VENKATARAMAN S T, GULATI S. Terminal sliding modes: A new approach to nonlinear control synthesis [C]//Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments. P i s a : IEEE, 1991: 443-448.
[12] YU S H, YU X H, MAN Z H. Robust global terminal sliding mode control of SISO nonlinear uncertain systems [C]//39th IEEE Conference on Decision and Control. Sydney: IEEE, 2000: 2198-2203.
[13] MAN Z H, PAPLINSKI A P, WU H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators [J]. IEEE Transactions on Automatic Control, 1994, 39(12): 2464-2469.
[14] TANG Y. Terminal sliding mode control for rigid robots [J]. Automatica, 1998, 34(1): 51-56.
[15] YU X H, ZHIHONG M. Fast terminal sliding-mode control design for nonlinear dynamical systems [J]. IEEE Transactions on Circuits and Systems I : Fundamental Theory and Applications, 2002, 49(2): 261-264.
[16] YU S H, YU X H, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode [J]. Automatica, 2005, 41(11): 1957-1964.
[17] FENG Y, YU X H, HAN F L. On nonsingular terminal sliding-mode control of nonlinear systems [J]. Automatica, 2013, 49(6): 1715-1722.
[18] FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38(12): 2159-2167.
[19] LI S B, LI K Q, W ANG J Q, et al. Nonsingular and fast terminal sliding mode control method [J]. Information and Control, 2009, 38(1): 1-8 (in Chinese).
[20] YANG L, YANG J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems [J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865-1879.
[21] MAN Z H, YU X H. Terminal sliding mode control of MIMO linear systems [J]. IEEE Transactions on Circuits and Systems I : Fundamental Theory and Applications, 1997, 44(11): 1065-1070.
[22] W ANG L Y, CHAI T Y, ZHAI L F. Neural-networkbased terminal sliding-mode control of robotic manipulators including actuator dynamics [J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 32963304.
[23] ZOU A M, KUMAR K D, HOU Z G, et al. Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 41(4): 950-963.
[24] LU K F, XIA Y Q. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence [J]. Automatica, 2013, 49(12): 3591-3599.
[25] SHAO S K, ZONG Q, TIAN B L, et al. Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement [J]. Journal of the Franklin Institute, 2017, 354(12): 4656-4674.
[26] ZHANG Y, TANG S J, GUO J. Adaptive-gain fast super-twisting sliding mode fault tolerant control for a reusable launch vehicle in reentry phase [J]. ISA Transactions, 2017, 71: 380-390.
[27] YI S C, ZHAI J Y. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators [J]. ISA Transactions, 2019, 90: 41-51.
[28] W ANG Y Y, ZHU K W, YAN F, et al. Adaptive supertwisting nonsingular fast terminal sliding mode control for cable-driven manipulators using time-delay estima- tion [J]. Advances in Engineering Software, 2019, 128: 113-124.
[29] W ANG Y Y, ZHU K W, CHEN B, et al. Model-free continuous nonsingular fast terminal sliding mode control for cable-driven manipulators [J]. ISA Transactions, 2020, 98: 483-495.
[30] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control [M]. Hudson County: John Wiley & Sons, Ltd. 2011.
[31] POLYAKOV A. Nonlinear feedback design for fixedtime stabilization of linear control systems [J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110.
[32] ZHOU Z G, ZHOU D, SHI X N, et al. Prescribed performance fixed-time tracking control for a class of second-order nonlinear systems with disturbances and actuator saturation [J]. International Journal of Control, 2021, 94(1): 223-234.
[33] XIA Y, XIE W, MA J C. Research on trajectory tracking control of manipulator based on modified terminal sliding mode with double power reaching law [J]. International Journal of Advanced Robotic Systems, 2019, 16(3): 172988141984789.
[34] ZHANG Y, TANG S J, GUO J. Adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence [J]. International Journal of Robust and Nonlinear Control, 2018, 28(8): 2996-3014.