Naval Architecture and Ocean Engineering

Improved Nonsingular Fast Terminal Sliding Mode Control of Unmanned Underwater Hovering Vehicle

Expand
  • (a. School of Naval Architecture, Ocean and Civil Engineering; b. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Received date: 2021-04-21

  Online published: 2022-06-23

Abstract

An improved nonsingular fast terminal sliding mode manifold based on scaled state error is proposed in this paper. It can significantly accelerate the convergence rate of the state error which is initially far from the origin and achieve the fixed-time convergence. In addition, conventional double power term based reaching law is improved to ensure the convergence of sliding state in the presence of disturbances. The proposed approach is applied to the hovering control of an unmanned underwater vehicle. The controller exhibits both fast convergence and strong robustness to model uncertainty and external disturbances

Cite this article

HE Chenlua (何晨璐), FENG Zhengpinga,b∗ (冯正平) . Improved Nonsingular Fast Terminal Sliding Mode Control of Unmanned Underwater Hovering Vehicle[J]. Journal of Shanghai Jiaotong University(Science), 2022 , 27(3) : 393 -401 . DOI: 10.1007/s12204-022-2447-0

References

[1] YUH J. Design and control of autonomous underwater robots: A survey [J]. Autonomous Robots, 2000, 8(1): 7-24. [2] YOERGER D, SLOTINE J. Robust trajectory control of underwater vehicles [J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 462-470. [3] ISHAQUE K, ABDULLAH S S, AYOB S M, et al. A simplified approach to design fuzzy logic controller for an underwater vehicle [J]. Ocean Engineering, 2011, 38(1): 271-284. [4] LEABOURNE K N, ROCK S M, FLEISCHER S D, et al. Station keeping of an ROV using vision technology [C]//Oceans’97. MTS/IEEE Conference Proceedings. Halifax, NS: IEEE, 1997: 634-640. [5] YUH J. A neural net controller for underwater robotic vehicles [J]. IEEE Journal of Oceanic Engineering, 1990, 15(3): 161-166. [6] QIAN Y, FENG Z P, BI A Y, et al. T-S fuzzy modelbased depth control of underwater vehicles [J]. Jour- nal of Shanghai Jiao Tong University (Science), 2020, 25(3): 315-324. [7] W ANG J S, LEE C S G, YUH J. Self-adaptive neurofuzzy systems with fast parameter learning for autonomous underwater vehicle control [C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. S a n Francisco, CA: IEEE, 2000: 3861-3866. [8] KIM T W, YUH J. A novel neuro-fuzzy controller for autonomous underwater vehicles [C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation. Seoul: IEEE, 2001: 23502355. [9] ˇSABANOVIC A. Variable structure systems with sliding modes in motion control — A survey [J]. IEEE Transactions on Industrial Informatics, 2011, 7(2): 212-223. [10] UTKIN V I. Sliding modes in control and optimization [M]. Berlin, Heidelberg: Springer, 1992. [11] VENKATARAMAN S T, GULATI S. Terminal sliding modes: A new approach to nonlinear control synthesis [C]//Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments. P i s a : IEEE, 1991: 443-448. [12] YU S H, YU X H, MAN Z H. Robust global terminal sliding mode control of SISO nonlinear uncertain systems [C]//39th IEEE Conference on Decision and Control. Sydney: IEEE, 2000: 2198-2203. [13] MAN Z H, PAPLINSKI A P, WU H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators [J]. IEEE Transactions on Automatic Control, 1994, 39(12): 2464-2469. [14] TANG Y. Terminal sliding mode control for rigid robots [J]. Automatica, 1998, 34(1): 51-56. [15] YU X H, ZHIHONG M. Fast terminal sliding-mode control design for nonlinear dynamical systems [J]. IEEE Transactions on Circuits and Systems I : Fundamental Theory and Applications, 2002, 49(2): 261-264. [16] YU S H, YU X H, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode [J]. Automatica, 2005, 41(11): 1957-1964. [17] FENG Y, YU X H, HAN F L. On nonsingular terminal sliding-mode control of nonlinear systems [J]. Automatica, 2013, 49(6): 1715-1722. [18] FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38(12): 2159-2167. [19] LI S B, LI K Q, W ANG J Q, et al. Nonsingular and fast terminal sliding mode control method [J]. Information and Control, 2009, 38(1): 1-8 (in Chinese). [20] YANG L, YANG J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems [J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865-1879. [21] MAN Z H, YU X H. Terminal sliding mode control of MIMO linear systems [J]. IEEE Transactions on Circuits and Systems I : Fundamental Theory and Applications, 1997, 44(11): 1065-1070. [22] W ANG L Y, CHAI T Y, ZHAI L F. Neural-networkbased terminal sliding-mode control of robotic manipulators including actuator dynamics [J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 32963304. [23] ZOU A M, KUMAR K D, HOU Z G, et al. Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 41(4): 950-963. [24] LU K F, XIA Y Q. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence [J]. Automatica, 2013, 49(12): 3591-3599. [25] SHAO S K, ZONG Q, TIAN B L, et al. Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement [J]. Journal of the Franklin Institute, 2017, 354(12): 4656-4674. [26] ZHANG Y, TANG S J, GUO J. Adaptive-gain fast super-twisting sliding mode fault tolerant control for a reusable launch vehicle in reentry phase [J]. ISA Transactions, 2017, 71: 380-390. [27] YI S C, ZHAI J Y. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators [J]. ISA Transactions, 2019, 90: 41-51. [28] W ANG Y Y, ZHU K W, YAN F, et al. Adaptive supertwisting nonsingular fast terminal sliding mode control for cable-driven manipulators using time-delay estima- tion [J]. Advances in Engineering Software, 2019, 128: 113-124. [29] W ANG Y Y, ZHU K W, CHEN B, et al. Model-free continuous nonsingular fast terminal sliding mode control for cable-driven manipulators [J]. ISA Transactions, 2020, 98: 483-495. [30] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control [M]. Hudson County: John Wiley & Sons, Ltd. 2011. [31] POLYAKOV A. Nonlinear feedback design for fixedtime stabilization of linear control systems [J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110. [32] ZHOU Z G, ZHOU D, SHI X N, et al. Prescribed performance fixed-time tracking control for a class of second-order nonlinear systems with disturbances and actuator saturation [J]. International Journal of Control, 2021, 94(1): 223-234. [33] XIA Y, XIE W, MA J C. Research on trajectory tracking control of manipulator based on modified terminal sliding mode with double power reaching law [J]. International Journal of Advanced Robotic Systems, 2019, 16(3): 172988141984789. [34] ZHANG Y, TANG S J, GUO J. Adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence [J]. International Journal of Robust and Nonlinear Control, 2018, 28(8): 2996-3014.
Outlines

/