[1] JORDAN M I, MITCHELL T M. Machine learning:Trends, perspectives, and prospects [J]. Science, 2015,349(6245): 255-260.
[2] IBRAHIMA, PRIMAKOV S, BEUQUEM, et al. Radiomicsfor precision medicine: Current challenges, futureprospects, and the proposal of a new framework[J]. Methods, 2021, 188: 20-29.
[3] ANEJA S, CHANG E, OMURO A. Applications ofartificial intelligence in neuro-oncology [J]. CurrentOpinion in Neurology, 2019, 32(6): 850-856.
[4] SCHWYZER M, MARTINI K, BENZ D C, et al. Artificialintelligence for detecting small FDG-positivelung nodules in digital PET/CT: Impact of image reconstructionson diagnostic performance [J]. EuropeanRadiology, 2020, 30(4): 2031-2040.
[5] LAURITSEN S M, KRISTENSENM, OLSEN M V, etal. Explainable artificial intelligence model to predictacute critical illness from electronic health records [J].Nature Communications, 2020, 11(1): 3852.
[6] GUNASEKERAN D V, TING D S W, TAN G SW, et al. Artificial intelligence for diabetic retinopathyscreening, prediction and management [J]. CurrentOpinion in Ophthalmology, 2020, 31(5): 357-365.
[7] LOFTUS T J, TIGHE P J, FILIBERTO A C, et al.Artificial intelligence and surgical decision-making [J].JAMA Surgery, 2020, 155(2): 148-158.
[8] SHORTLIFFE E H, SEP′ULVEDA M J. Clinical decisionsupport in the era of artificial intelligence [J].JAMA, 2018, 320(21): 2199-2200.
[9] LEE M S, GRABOWSKI M M, HABBOUB G, etal. The impact of artificial intelligence on quality andsafety [J]. Global Spine Journal, 2020, 10(Sup. 1): 99-103.
[10] HOGARTY D T, MACKEY D A, HEWITT A W.Current state and future prospects of artificial intelligencein ophthalmology: A review [J]. Clinical & ExperimentalOphthalmology, 2019, 47(1): 128-139.
[11] WANG S Y, PERSHING S, LEE A Y, et al. Bigdata requirements for artificial intelligence [J]. CurrentOpinion in Ophthalmology, 2020, 31(5): 318-323.
[12] CONNOR C W. Artificial intelligence and machinelearning in anesthesiology [J]. Anesthesiology, 2019,131(6): 1346-1359.
[13] RAJKOMAR A, DEAN J, KOHANE I.Machine learningin medicine [J]. The New England Journal ofMedicine, 2019, 380(14): 1347-1358.
[14] HOWARD J. Artificial intelligence: Implications forthe future of work [J]. American Journal of IndustrialMedicine, 2019, 62(11): 917-926.
[15] HANDELMAN G S, KOK H K, CHANDRA R V, et al.eDoctor: Machine learning and the future of medicine[J]. Journal of Internal Medicine, 2018, 284(6): 603-619.
[16] MOORE M M, SLONIMSKY E, LONG A D, et al.Machine learning concepts, concerns and opportunitiesfor a pediatric radiologist [J]. Pediatric Radiology,2019, 49(4): 509-516.
[17] UDDINS, KHANA, HOSSAINME, et al. Comparingdifferent supervised machine learning algorithms fordisease prediction [J]. BMC Medical Informatics andDecision Making, 2019, 19(1): 281.
[18] CRUZ J A, WISHART D S. Applications of machinelearning in cancer prediction and prognosis [J]. CancerInformatics, 2007, 2: 59-77.
[19] ZHAO X, WU Y H, LEE D L, et al. iForest: Interpretingrandom forests via visual analytics [J]. IEEETransactions on Visualization and Computer Graphics,2019, 25(1): 407-416.
[20] HASHIMOTO D A, WITKOWSKI E, GAO L, et al.Artificial intelligence in anesthesiology: Current techniques,clinical applications, and limitations [J]. Anesthesiology,2020, 132(2): 379-394.
[21] PERGIALIOTIS V, POULIAKIS A, PARTHENIS C,et al. The utility of artificial neural networks and classificationand regression trees for the prediction of endometrialcancer in postmenopausal women [J]. PublicHealth, 2018, 164: 1-6.
[22] HINTON G. Deep learning: A technology with thepotential to transform health care [J]. JAMA, 2018,320(11): 1101-1102.
[23] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[24] GREGORY A, STAPELFELDT W H, KHANNA AK, et al. Intraoperative hypotension is associated withadverse clinical outcomes after noncardiac surgery [J].Anesthesia and Analgesia, 2021, 132(6): 1654-1665.
[25] SMISCHNEY N J, SHAWA D, STAPELFELDTWH,et al. Postoperative hypotension in patients dischargedto the intensive care unit after non-cardiac surgery isassociated with adverse clinical outcomes [J]. CriticalCare (London, England), 2020, 24(1): 682.
[26] HATIB F, JIAN Z P, BUDDI S, et al. Machinelearningalgorithm to predict hypotension based onhigh-fidelity arterial pressure waveform analysis [J].Anesthesiology, 2018, 129(4): 663-674.
[27] DAVIES S J, VISTISEN S T, JIAN Z P, et al. Abilityof an arterial waveform analysis-derived hypotensionprediction index to predict future hypotensive events in surgical patients [J]. Anesthesia and Analgesia,2020, 130(2): 352-359.
[28] WIJNBERGE M, GEERTS B F, HOL L, et al. Effectof a machine learning-derived early warning systemfor intraoperative hypotension vs standard careon depth and duration of intraoperative hypotensionduring elective noncardiac surgery: The HYPE randomizedclinical trial [J]. JAMA, 2020, 323(11): 1052-1060.
[29] MAHESHWARI K, BUDDI S, JIAN Z P, et al. Performanceof the Hypotension Prediction Index with noninvasivearterial pressure waveforms in non-cardiacsurgical patients [J]. Journal of Clinical Monitoringand Computing, 2021, 35(1): 71-78.
[30] LIN C S, CHANG C C, CHIU J S, et al. Applicationof an artificial neural network to predict postinductionhypotension during general anesthesia [J]. Medical DecisionMaking, 2011, 31(2): 308-314.
[31] KENDALE S, KULKARNI P, ROSENBERG A D,et al. Supervised machine-learning predictive analyticsfor prediction of postinduction hypotension [J]. Anesthesiology,2018, 129(4): 675-688.
[32] KANG A R, LEE J, JUNG W, et al. Development ofa prediction model for hypotension after induction ofanesthesia using machine learning [J]. PLoS One, 2020,15(4): e0231172.
[33] LUNDBERG S M, NAIR B, VAVILALA M S, etal. Explainable machine-learning predictions for theprevention of hypoxaemia during surgery [J]. NatureBiomedical Engineering, 2018, 2(10): 749-760.
[34] GENG W, TANG H, SHARMA A, et al. An artificialneural network model for prediction of hypoxemiaduring sedation for gastrointestinal endoscopy [J].The Journal of International Medical Research, 2019,47(5): 2097-2103.
[35] APFEL C C, KRANKE P, EBERHART L H J, etal. Comparison of predictive models for postoperativenausea and vomiting [J]. British Journal of Anaesthesia,2002, 88(2): 234-240.
[36] EBERHART L H J, H¨OGEL J, SEELING W, et al.Evaluation of three risk scores to predict postoperativenausea and vomiting [J]. Acta AnaesthesiologicaScandinavica, 2000, 44(4): 480-488.
[37] TRAEGER M, EBERHART A, GELDNER G, et al.Prediction of postoperative nausea and vomiting usingan artificial neural network [J]. Der Anaesthesist, 2003,52(12): 1132-1138.
[38] PENG S Y, WU K C, WANG J J, et al. Predictingpostoperative nausea and vomiting with the applicationof an artificial neural network [J]. British Journalof Anaesthesia, 2007, 98(1): 60-65.
[39] GONG C S A, YU L, TING C K, et al. Predictingpostoperative vomiting for orthopedic patients receivingpatient-controlled epidural analgesia with the applicationof an artificial neural network [J]. BioMedResearch International, 2014, 2014: 786418.
[40] WU H Y, GONG C A, LIN S P, et al. Predicting postoperativevomiting among orthopedic patients receivingpatient-controlled epidural analgesia using SVMand LR [J]. Scientific Reports, 2016, 6: 27041.
[41] WHITLOCK E L, FEINER J R, CHEN L L. Perioperativemortality, 2010 to 2014: A retrospective cohortstudy using the national anesthesia clinical outcomesregistry [J]. Anesthesiology, 2015, 123(6): 1312-1321.
[42] HOVE L D, STEINMETZ J, CHRISTOFFERSEN JK, et al. Analysis of deaths related to anesthesia in theperiod 1996-2004 from closed claims registered by theDanish Patient Insurance Association [J]. Anesthesiology,2007, 106(4): 675-680.
[43] DETSKY M E, JIVRAJ N, ADHIKARI N K, et al.Will this patient be difficult to intubate? [J]. JAMA,2019, 321(5): 493.
[44] CONNOR C W, SEGAL S. The importance of subjectivefacial appearance on the ability of anesthesiologiststo predict difficult intubation [J]. Anesthesia andAnalgesia, 2014, 118(2): 419-427.
[45] CONNOR C W, SEGAL S. Accurate classification ofdifficult intubation by computerized facial analysis [J].Anesthesia and Analgesia, 2011, 112(1): 84-93.
[46] CUENDET G L, SCHOETTKER P, Y¨UCE A, et al.Facial image analysis for fully automatic predictionof difficult endotracheal intubation [J]. IEEE Transactionson Biomedical Engineering, 2016, 63(2): 328-339.
[47] MATAVA C, PANKIV E, AHUMADA L, et al. Artificialintelligence, machine learning and the pediatricairway [J]. Paediatric Anaesthesia, 2020, 30(3): 264-268.
[48] DING Y M, WANG J X, GAO J D, et al. Severityevaluation of obstructive sleep apnea based on speechfeatures [J]. Sleep and Breathing, 2021, 25(2): 787-795.
[49] ESPINOZA-CUADROS F, FERN′ANDEZ-POZO R,TOLEDANO D T, et al. Speech signal and facialimage processing for obstructive sleep apnea assessment[J]. Computational and Mathematical Methods inMedicine, 2015, 2015: 489761.
[50] LIN C S, LI Y C, MOK M S, et al. Neural networkmodeling to predict the hypnotic effect of propofolbolus induction [C]//AMIA 2002 Annual SymposiumProceedings. San Antonio, TX: AMIA, 2002: 450-453.
[51] IONESCU C M, DE KEYSER R, TORRICO B C,et al. Robust predictive control strategy applied forpropofol dosing using BIS as a controlled variable duringanesthesia [J]. IEEE Transactions on BiomedicalEngineering, 2008, 55(9): 2161-2170.
[52] SEP′ULVEDA P O, CORT′INEZ L I, RECARTA, et al.Predictive ability of propofol effect-site concentrationsduring fast and slow infusion rates [J]. Acta AnaesthesiologicaScandinavica, 2010, 54(4): 447-452.
[53] YI J M, DOH I, LEE S H, et al. Predictive performanceof a new pharmacokinetic model for propofol inunderweight patients during target-controlled infusion[J]. Acta Anaesthesiologica Scandinavica, 2019, 63(4):448-454.
[54] NUNES C S, MENDONCA T F, AMORIM P, et al.Radial basis function neural networks versus fuzzy models to predict return of consciousness after generalanesthesia [C]//Proceedings of the 26th Annual InternationalConference of the IEEE EMBS. San Francisco,CA: IEEE, 2004: 865-868.
[55] SANTANEN O A P, SVARTLING N, HAASIO J, etal. Neural nets and prediction of the recovery rate fromneuromuscular block [J]. European Journal of Anaesthesiology,2003, 20(2): 87-92.
[56] NAIR A A, VELAGAPUDI M A, LANG J A, et al.Machine learning approach to predict postoperativeopioid requirements in ambulatory surgery patients [J].PLoS One, 2020, 15(7): e0236833.
[57] LEE S, WEI S J, WHITE V, et al. Classification ofopioid usage through semi-supervised learning for totaljoint replacement patients [J]. IEEE Journal ofBiomedical and Health Informatics, 2021, 25(1): 189-200.
[58] LU Y N, FORLENZA E, WILBUR R R, etal. Machine-learning model successfully predicts patientsat risk for prolonged postoperative opioiduse following elective knee arthroscopy [J]. KneeSurgery, Sports Traumatology, Arthroscopy, 2021.https://doi.org/10.1007/s00167-020-06421-7.
[59] ELLIS R J, WANG Z C, GENES N, et al. Predictingopioid dependence from electronic health records withmachine learning [J]. BioData Mining, 2019, 12: 3.
[60] JUNGQUIST C R, CHANDOLA V, SPULECKI C,et al. Identifying patients experiencing opioid-inducedrespiratory depression during recovery from anesthesia:The application of electronic monitoring devices[J]. Worldviews on Evidence-Based Nursing, 2019,16(3): 186-194.
[61] RAHMAN Q A, JANMOHAMED T, CLARKE H, etal. Interpretability and class imbalance in predictionmodels for pain volatility in manage my pain app users:Analysis using feature selection and majority votingmethods [J]. JMIR Medical Informatics, 2019, 7(4):e15601.
[62] HU Y J, KU T H, JAN R H, et al. Decision treebasedlearning to predict patient controlled analgesiaconsumption and readjustment [J]. BMC Medical Informaticsand Decision Making, 2012, 12: 131.
[63] MILLER D D, BROWN E W. Artificial intelligence inmedical practice: The question to the answer? [J]. TheAmerican Journal of Medicine, 2018, 131(2): 129-133.
[64] ALEXANDER J C, JOSHI G P. Anesthesiology, automation,and artificial intelligence [J]. Baylor UniversityMedical Center Proceedings, 2018, 31(1): 117-119.
[65] LI W, LIU H, YANG P, et al. Supporting regularizedlogistic regression privately and efficiently [J]. PLoSOne, 2016, 11(6): e0156479.
[66] CHAPALAIN X, HUET O. Is artificial intelligence(AI) at the doorstep of Intensive Care Units (ICU)and operating room (OR)? [J]. Anaesthesia, CriticalCare & Pain Medicine, 2019, 38(4): 337-338.
[67] CHAR D S, SHAH N H, MAGNUS D. Implementingmachine learning in health care-addressing ethicalchallenges [J]. The New England Journal of Medicine,2018, 378(11): 981-983.