[1] JAYARAMAN S, SANGAREDDI V, PERIYASAMYR, et al. Modified limb lead ECG system effects on electrocardiographicwave amplitudes and frontal planeaxis in sinus rhythm subjects [J]. The Anatolian Journalof Cardiology, 2017, 17(1): 46-54.
[2] MARK R, MOODY G. MIT-BIH arrhythmia databasedirectory [M]. 2nd ed. Cambridge, MA: MIT Press,1988.
[3] OSOWSKI S, HOAI L T, MARKIEWICZ T. Supportvector machine-based expert system for reliable heartbeatrecognition [J]. IEEE Transactions on BiomedicalEngineering, 2004, 51(4): 582-589.
[4] COAST D A, STERN R M, CANO G G, et al. Anapproach to cardiac arrhythmia analysis using hiddenMarkov models [J]. IEEE Transactions on BiomedicalEngineering, 1990, 37(9): 826-836.
[5] AFONSO V X, TOMPKINS W J, NGUYEN T Q, etal. ECG beat detection using filter banks [J]. IEEETransactions on Biomedical Engineering, 1999, 46(2):192-202.
[6] INAN O T, GIOVANGRANDI L, KOVACS G T A.Robust neural-network-based classification of prematureventricular contractions using wavelet transformand timing interval features [J]. IEEE Transactions onBiomedical Engineering, 2006, 53(12): 2507-2515.
[7] DE CHAZAL P, O’DWYER M, REILLY R B. Automaticclassification of heartbeats using ECG morphologyand heartbeat interval features [J]. IEEE Transactionson Biomedical Engineering, 2004, 51(7): 1196-1206.
[8] DAS M K, ARI S. ECG beats classification using mixtureof features [J]. International Scholarly ResearchNotices, 2014, 2014: 178436.
[9] SAHOO S, KANUNGO B, BEHERA S, et al. Multiresolutionwavelet transform based feature extraction andECG classification to detect cardiac abnormalities [J].Measurement, 2017, 108: 55-66.
[10] KIRANYAZ S, INCE T, GABBOUJ M. Real-timepatient-specific ECG classification by 1-D convolutionalneural networks [J]. IEEE Transactions onBiomedical Engineering, 2016, 63(3): 664-675.
[11] XU S S, MAKMW, CHEUNG C C. Towards end-toendECG classification with raw signal extraction anddeep neural networks [J]. IEEE Journal of Biomedicaland Health Informatics, 2019, 23(4): 1574-1584.
[12] ACHARYA U R, FUJITA H, LIH O S, et al. Automateddetection of arrhythmias using different intervalsof tachycardia ECG segments with convolutionalneural network [J]. Information Sciences, 2017, 405:81-90.
[13] TAN J H, HAGIWARA Y, PANG W, et al. Applicationof stacked convolutional and long short-termmemory network for accurate identification of CADECG signals [J]. Computers in Biology and Medicine,2018, 94: 19-26.
[14] KUMAR M, PACHORI R B, ACHARYA U R. Characterizationof coronary artery disease using flexibleanalytic wavelet transform applied on ECG signals [J].Biomedical Signal Processing and Control, 2017, 31:301-308.
[15] ACHARYA U R, SUDARSHAN V K, KOH J E W, etal. Application of higher-order spectra for the characterizationof Coronary artery disease using electrocardiogramsignals [J]. Biomedical Signal Processing andControl, 2017, 31: 31-43.
[16] ACHARYA U R, FUJITA H, LIH O S, et al. Automateddetection of coronary artery disease using differentdurations of ECG segments with convolutionalneural network [J]. Knowledge-Based Systems, 2017,132: 62-71.
[17] MIRVIS D M, BERSON A S, GOLDBERGER A L,et al. Instrumentation and practice standards for electrocardiographicmonitoring in special care units. Areport for health professionals by a Task Force of theCouncil on Clinical Cardiology, American Heart Association[J]. Circulation, 1989, 79(2): 464-471.
[18] SU J, DAI J, GUAN Z, et al. A four-lead real time arrhythmiaanalysis algorithm [C]//2017 Computing inCardiology Conference (CinC ). Rennes: IEEE, 2017:1-4.
[19] YAN Y, QIN X B,WU Y G, et al. A restricted Boltzmannmachine based two-lead electrocardiography classification [C]//2015 IEEE 12th International Conferenceon Wearable and Implantable Body Sensor Networks(BSN). Cambridge, MA: IEEE, 2015: 1-9.
[20] CHAZAL P. Different techniques used to improve theperformance of a classifier of the twelve-lead electrocardiogram[C]//Computers in Cardiology 2001. Rotterdam:IEEE, 2001: 525-528.
[21] LA FW, TSAI P Y. Deep learning for detection of fetalECG from multi-channel abdominal leads [C]//2018Asia-Pacific Signal and Information Processing AssociationAnnual Summit and Conference (APSIPAASC). Honolulu, HI: IEEE, 2018: 1397-1401.
[22] LUZ E J D S, SCHWARTZWR, C′AMARA-CH′AVEZG, et al. ECG-based heartbeat classification for arrhythmiadetection: A survey [J]. Computer Methodsand Programs in Biomedicine, 2016, 127: 144-164.
[23] YE C, KUMAR B V K V, COIMBRA M T. An automaticsubject-adaptable heartbeat classifier based onmultiview learning [J]. IEEE Journal of Biomedicaland Health Informatics, 2016, 20(6): 1485-1492.
[24] INCE T, KIRANYAZ S, GABBOUJ M. A generic androbust system for automated patient-specific classificationof ECG signals [J]. IEEE Transactions on BiomedicalEngineering, 2009, 56(5): 1415-1426.
[25] JIANG W, KONG S G. Block-based neural networksfor personalized ECG signal classification [J]. IEEETransactions on Neural Networks, 2007, 18(6): 1750-1761.
[26] HU Y H, PALREDDY S, TOMPKINSWJ. A patientadaptableECG beat classifier using a mixture of expertsapproach [J]. IEEE Transactions on BiomedicalEngineering, 1997, 44(9): 891-900.
[27] AAMI. Testing and reporting performance results ofventricular arrhythmia detection algorithms [S]. Arlington,VA: Association Advancement Medical Instrumentation,1987.
[28] TEIJEIRO T, F′ELIX P, PRESEDO J, et al. Heartbeatclassification using abstract features from the abductiveinterpretation of the ECG [J]. IEEE Journal ofBiomedical and Health Informatics, 2018, 22(2): 409-420.
[29] MOODY G B, MARK R G. The impact of the mitbiharrhythmia database [J]. IEEE Engineering inMedicine and Biology Magazine, 2001, 20(3): 45-50.
[30] GOLDBERGER A L, AMARAL L A, GLASS L, etal. PhysioBank, PhysioToolkit, and PhysioNet: Componentsof a new research resource for complex physiologicsignals [J]. Circulation, 2000, 101(23): E215-E220.
[31] SABHERWAL P, AGRAWAL M, SINGH L. Automaticdetection of the R peaks in single-lead ECG signal[J]. Circuits, Systems, and Signal Processing, 2017,36(11): 4637-4652.
[32] PAN J, TOMPKINS W J. A real-time QRS detectionalgorithm [J]. IEEE Transactions on Biomedical Engineering,1985, 32(3): 230-236.
[33] LI C, ZHENG C, TAI C. Detection of ECG characteristicpoints using wavelet transforms [J]. IEEE Transactionson Biomedical Engineering, 1995, 42(1): 21-28.
[34] YE C, VIJAYA KUMAR B V K, COIMBRA M T.Heartbeat classification using morphological and dynamicfeatures of ECG signals [J]. IEEE Transactionson Biomedical Engineering, 2012, 59(10): 2930-2941.
[35] WEI X C. Analyze deep learning: CNN theory andvisual practice [M]. Beijing: Publishing House of ElectronicsIndustry, 2018: 137-138 (in Chinese).
[36] CHAWLA N V, BOWYER K W, HALL L O, et al.SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16: 321-357.
[37] BATISTA G E A P A, BAZZAN A L C,MONARDMC. Balancing training data for automated annotationof keywords: A case study [C]//II Brazilian Workshopon Bioinformatics. Maca′e RJ: DBLP, 2003: 10-18.
[38] HE K, ZHANG X, REN S, et al. Identity mappings indeep residual networks [M]//Computer vision – ECCV2016. Cham: Springer, 2016: 630-645.
[39] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on ComputerVision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018: 7132-7141.
[40] WANG J. Proposed new requirements for testing andreporting performance results of arrhythmia detectionalgorithms [J]. Journal of Electrocardiology, 2014,47(6): 909.
[41] SCHWARTZ-ZIV R, TISHBY N. Opening the blackbox of deep neural networks via information [EB/OL].(2017-04-29). https://arxiv.org/pdf/1703.00810.
[42] TISHBY N, ZASLAVSKY N. Deep learning and theinformation bottleneck principle [J]. 2015 IEEE InformationTheory Workshop (ITW). Jerusalem: IEEE,2015: 1-5.