Automation, Image Processing

Fast Smooth Second-Order Sliding Mode Control with Disturbance Observer for Automatic Shell Magazine

Expand
  • (1. School of Mechanical Engineering, Changshu Institute of Technology, Suzhou 215500, Jiangsu, China;2. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

Received date: 2019-03-15

  Online published: 2021-12-01

Abstract

This paper studies practical control design for a novel automatic shell magazine (ASM) with a newfast smooth second-order sliding mode (FSSOSM) control based on disturbance observer. The dynamic modelof the ASM with parameter perturbations and nonlinear friction is established. A higher order sliding modedisturbance observer based on super-twisting algorithm is utilized as a robust compensator to estimate the lumpeduncertainties. The proposed FSSOSM control is performed to obtain the continuous sliding mode control lawand inhibit the chattering phenomenon. The finite time convergence is investigated by utilizing the Lyapunovstability theorem. Three controllers, the traditional sliding mode controller, the proposed FSSOSM controller anda continuous fixed-time second-order sliding mode (CFTSOSM) controller, are compared. Extensive comparativesimulation results under three typical working conditions (no-loaded, half-loaded and full-loaded) demonstratethat the proposed control strategy has a high dynamic tracking performance along with a good robustness againstmodel uncertainty.

Cite this article

YAO Laipeng (姚来鹏), HOU Baolin ∗(侯保林), LIU Xi (刘曦) . Fast Smooth Second-Order Sliding Mode Control with Disturbance Observer for Automatic Shell Magazine[J]. Journal of Shanghai Jiaotong University(Science), 2021 , 26(6) : 847 -856 . DOI: 10.1007/s12204-020-2218-8

References

[1] ˇSABANOVIC A. Variable structure systems with slidingmodes in motion control: A survey [J]. IEEETransactions on Industrial Informatics, 2011, 7(2):212-223. [2] SHTESSEL Y B, TOURNES C H, FRIDMAN L. Advancesin guidance and control of aerospace vehiclesusing sliding mode control and observation techniques[J]. Journal of the Franklin Institute, 2012, 349(2):391-396. [3] XU Q. Precision motion control of piezoelectricnanopositioning stage with chattering-free adaptivesliding mode control [J]. IEEE Transactions on AutomationScience and Engineering, 2017, 14(1): 238-248. [4] LAU J Y, LIANG W, LIAW H C, et al. Sliding modedisturbance observer-based motion control for a piezoelectricactuator-based surgical device [J]. Asian Journalof Control, 2018, 20(3): 1194-1203. [5] WANG G, XU Q. Adaptive terminal sliding mode controlfor motion tracking of a micropositioning system[J]. Asian Journal of Control, 2018, 20(3): 1241-1252. [6] CAPISANI L M, FERRARA A, MAGNANI L. Designand experimental validation of a second-order slidingmodemotion controller for robot manipulators [J]. InternationalJournal of Control, 2009, 82(2): 365-377. [7] MU C, SUN C, QIAN C, et al. Super-twisting slidingmode control based on Lyapunov analysis for thecursing flight of hypersonic vehicles [C]//IEEE InternationalConference on Control and Automation.Hangzhou, China: IEEE, 2013: 522-527. [8] NEMATI H, BANDO M, HOKAMOTO S. Chatteringattenuation sliding mode approach for nonlinear systems[J]. Asian Journal of Control, 2017, 19(4): 1519-1531. [9] SHENG Y, WANG L, LIU X. A novel sliding modecontrol for a class of second-order mechanical systems[J]. Asian Journal of Control, 2016, 18(5): 1950-1957. [10] TIWARI P M, JANARDHANAN S, UN-NABI M.Spacecraft anti-unwinding attitude control usingsecond-order sliding mode [J]. Asian Journal of Control,2018, 20(1): 455-468. [11] LUQUE-VEGA L, CASTILLO-TOLEDO B,LOUKIANOV A G. Robust block second ordersliding mode control for a quadrotor [J]. Journal ofthe Franklin Institute, 2012, 349(2): 719-739. [12] YANG P F, FANG Y W, WU Y L, et al. Finitetimeconvergent terminal guidance law design basedon stochastic fast smooth second-order sliding mode[J]. Optik, 2016, 127(15): 6036-6049. [13] XU Q. Continuous integral terminal third-order slidingmode motion control for piezoelectric nanopositioningsystem [J]. IEEE-ASME Transactions on Mechatronics,2017, 22(4): 1828-1838. [14] ZHENG E H, XIONG J J, LUO J L. Second order slidingmode control for a quadrotor UAV [J]. ISA Transactions,2014, 53(4): 1350-1356. [15] HOU H, ZHANG Q. Finite-time synchronization forsecond-order nonlinear multi-agent system via pinningexponent sliding mode control [J]. ISA Transactions,2016, 65: 96-108. [16] SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A.Smooth second-order sliding modes: Missile guidanceapplication [J]. Automatica, 2007, 43(8): 1470-1476. [17] MORENO J A, OSORIO M. A Lyapunov approachto second-order sliding mode controllers and observers[C]//47th IEEE Conference on Decision and Control.Cancun, Mexico: IEEE, 2008: 2856-2861. [18] WIBOWO W K, JEONG S K. Improved estimationof rotor position for sensorless control of a PMSMbased on a sliding mode observer [J]. Journal of CentralSouth University, 2016, 23(7): 1643-1656. [19] MORENO J A, OSORIO M. Strict Lyapunov functionsfor the super-twisting algorithm [J]. IEEE Transactionson Automatic Control, 2012, 57(4): 1035-1040. [20] RATH J J, VELUVOLU K C, DEFOORT M, et al.Higher-order sliding mode observer for estimation oftyre friction in ground vehicles [J]. IET Control Theoryand Applications, 2014, 8(6): 399-408. [21] ZHAO L, HUANG J, LIU H, et al. Second-ordersliding-mode observer with online parameter identificationfor sensorless induction motor drives [J]. IEEETransactions on Industrial Electronics, 2014, 61(10):5280-5289. [22] MU C, ZONG Q, TIAN B, et al. Continuous slidingmode controller with disturbance observer for hypersonicvehicles [J]. IEEE/CAA Journal of AutomaticaSinica, 2015, 2(1): 45-55. [23] KOMMURI S K, DEFOORT M, KARIMI H R, et al.A robust observer-based sensor fault-tolerant controlfor PMSM in electric vehicles [J]. IEEE Transactionson Industrial Electronics, 2016, 63(12): 7671-7681. [24] CHEN Z, YAO B, WANG Q. Adaptive robust precisionmotion control of linear motors with integratedcompensation of nonlinearities and bearing flexiblemodes [J]. IEEE Transactions on Industrial Informatics,2013, 9(2): 965-973. [25] YAO J, JIAO Z, MA D. A practical nonlinear adaptivecontrol of hydraulic servomechanisms with periodiclikedisturbances [J]. IEEE/ASME Transactions onMechatronics, 2015, 20(6): 2752-2760. [26] HE S, LIN D, WANG J. Continuous second-ordersliding mode based impact angle guidance law [J].Aerospace Science and Technology, 2015, 41: 199-208. [27] ZHANG D X, FANG Y W, YANG P F, et al. Stochasticfast smooth second-order sliding modes terminalguidance law design [J]. Optik, 2016, 127(13): 5359-5364. [28] ZHANG R, SUN C, ZHANG J, et al. Fast smooth secondorder sliding mode control design for near-spacehypersonic vehicle’s re-entry attitude [C]//31st ChineseControl Conference. Heifei, China: IEEE, 2012:3143-3148. [29] SHEN Y, HUANG Y H. Global finite-time stabilisationfor a class of nonlinear systems [J]. InternationalJournal of Systems Science, 2012, 43(1): 73-78. [30] BASIN M, PANATHULA C B, SHTESSEL Y B. Multivariablecontinuous fixed-time second-order slidingmode control: Design and convergence time estimation[J]. IET Control Theory and Applications, 2017,11(8): 1104-1111. [31] BASIN M, RODRIGUEZ-RAMIREZ P C, GARZAALONSOA. Continuous fixed-time convergent supertwistingalgorithm in case of unknown state and disturbanceinitial conditions [J]. Asian Journal of Control,2019, 21(1): 323-338. [32] WANG Y, GU L, XU Y, et al. Practical tracking controlof robot manipulators with continuous fractionalordernonsingular terminal sliding mode [J]. IEEETransactions on Industrial Electronics, 2016, 63(10):6194-6204.
Outlines

/