[1] ˇSABANOVIC A. Variable structure systems with slidingmodes in motion control: A survey [J]. IEEETransactions on Industrial Informatics, 2011, 7(2):212-223.
[2] SHTESSEL Y B, TOURNES C H, FRIDMAN L. Advancesin guidance and control of aerospace vehiclesusing sliding mode control and observation techniques[J]. Journal of the Franklin Institute, 2012, 349(2):391-396.
[3] XU Q. Precision motion control of piezoelectricnanopositioning stage with chattering-free adaptivesliding mode control [J]. IEEE Transactions on AutomationScience and Engineering, 2017, 14(1): 238-248.
[4] LAU J Y, LIANG W, LIAW H C, et al. Sliding modedisturbance observer-based motion control for a piezoelectricactuator-based surgical device [J]. Asian Journalof Control, 2018, 20(3): 1194-1203.
[5] WANG G, XU Q. Adaptive terminal sliding mode controlfor motion tracking of a micropositioning system[J]. Asian Journal of Control, 2018, 20(3): 1241-1252.
[6] CAPISANI L M, FERRARA A, MAGNANI L. Designand experimental validation of a second-order slidingmodemotion controller for robot manipulators [J]. InternationalJournal of Control, 2009, 82(2): 365-377.
[7] MU C, SUN C, QIAN C, et al. Super-twisting slidingmode control based on Lyapunov analysis for thecursing flight of hypersonic vehicles [C]//IEEE InternationalConference on Control and Automation.Hangzhou, China: IEEE, 2013: 522-527.
[8] NEMATI H, BANDO M, HOKAMOTO S. Chatteringattenuation sliding mode approach for nonlinear systems[J]. Asian Journal of Control, 2017, 19(4): 1519-1531.
[9] SHENG Y, WANG L, LIU X. A novel sliding modecontrol for a class of second-order mechanical systems[J]. Asian Journal of Control, 2016, 18(5): 1950-1957.
[10] TIWARI P M, JANARDHANAN S, UN-NABI M.Spacecraft anti-unwinding attitude control usingsecond-order sliding mode [J]. Asian Journal of Control,2018, 20(1): 455-468.
[11] LUQUE-VEGA L, CASTILLO-TOLEDO B,LOUKIANOV A G. Robust block second ordersliding mode control for a quadrotor [J]. Journal ofthe Franklin Institute, 2012, 349(2): 719-739.
[12] YANG P F, FANG Y W, WU Y L, et al. Finitetimeconvergent terminal guidance law design basedon stochastic fast smooth second-order sliding mode[J]. Optik, 2016, 127(15): 6036-6049.
[13] XU Q. Continuous integral terminal third-order slidingmode motion control for piezoelectric nanopositioningsystem [J]. IEEE-ASME Transactions on Mechatronics,2017, 22(4): 1828-1838.
[14] ZHENG E H, XIONG J J, LUO J L. Second order slidingmode control for a quadrotor UAV [J]. ISA Transactions,2014, 53(4): 1350-1356.
[15] HOU H, ZHANG Q. Finite-time synchronization forsecond-order nonlinear multi-agent system via pinningexponent sliding mode control [J]. ISA Transactions,2016, 65: 96-108.
[16] SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A.Smooth second-order sliding modes: Missile guidanceapplication [J]. Automatica, 2007, 43(8): 1470-1476.
[17] MORENO J A, OSORIO M. A Lyapunov approachto second-order sliding mode controllers and observers[C]//47th IEEE Conference on Decision and Control.Cancun, Mexico: IEEE, 2008: 2856-2861.
[18] WIBOWO W K, JEONG S K. Improved estimationof rotor position for sensorless control of a PMSMbased on a sliding mode observer [J]. Journal of CentralSouth University, 2016, 23(7): 1643-1656.
[19] MORENO J A, OSORIO M. Strict Lyapunov functionsfor the super-twisting algorithm [J]. IEEE Transactionson Automatic Control, 2012, 57(4): 1035-1040.
[20] RATH J J, VELUVOLU K C, DEFOORT M, et al.Higher-order sliding mode observer for estimation oftyre friction in ground vehicles [J]. IET Control Theoryand Applications, 2014, 8(6): 399-408.
[21] ZHAO L, HUANG J, LIU H, et al. Second-ordersliding-mode observer with online parameter identificationfor sensorless induction motor drives [J]. IEEETransactions on Industrial Electronics, 2014, 61(10):5280-5289.
[22] MU C, ZONG Q, TIAN B, et al. Continuous slidingmode controller with disturbance observer for hypersonicvehicles [J]. IEEE/CAA Journal of AutomaticaSinica, 2015, 2(1): 45-55. [23] KOMMURI S K, DEFOORT M, KARIMI H R, et al.A robust observer-based sensor fault-tolerant controlfor PMSM in electric vehicles [J]. IEEE Transactionson Industrial Electronics, 2016, 63(12): 7671-7681.
[24] CHEN Z, YAO B, WANG Q. Adaptive robust precisionmotion control of linear motors with integratedcompensation of nonlinearities and bearing flexiblemodes [J]. IEEE Transactions on Industrial Informatics,2013, 9(2): 965-973.
[25] YAO J, JIAO Z, MA D. A practical nonlinear adaptivecontrol of hydraulic servomechanisms with periodiclikedisturbances [J]. IEEE/ASME Transactions onMechatronics, 2015, 20(6): 2752-2760.
[26] HE S, LIN D, WANG J. Continuous second-ordersliding mode based impact angle guidance law [J].Aerospace Science and Technology, 2015, 41: 199-208.
[27] ZHANG D X, FANG Y W, YANG P F, et al. Stochasticfast smooth second-order sliding modes terminalguidance law design [J]. Optik, 2016, 127(13): 5359-5364.
[28] ZHANG R, SUN C, ZHANG J, et al. Fast smooth secondorder sliding mode control design for near-spacehypersonic vehicle’s re-entry attitude [C]//31st ChineseControl Conference. Heifei, China: IEEE, 2012:3143-3148.
[29] SHEN Y, HUANG Y H. Global finite-time stabilisationfor a class of nonlinear systems [J]. InternationalJournal of Systems Science, 2012, 43(1): 73-78.
[30] BASIN M, PANATHULA C B, SHTESSEL Y B. Multivariablecontinuous fixed-time second-order slidingmode control: Design and convergence time estimation[J]. IET Control Theory and Applications, 2017,11(8): 1104-1111.
[31] BASIN M, RODRIGUEZ-RAMIREZ P C, GARZAALONSOA. Continuous fixed-time convergent supertwistingalgorithm in case of unknown state and disturbanceinitial conditions [J]. Asian Journal of Control,2019, 21(1): 323-338.
[32] WANG Y, GU L, XU Y, et al. Practical tracking controlof robot manipulators with continuous fractionalordernonsingular terminal sliding mode [J]. IEEETransactions on Industrial Electronics, 2016, 63(10):6194-6204.