Material, Structure, Mechanics

Notched Component Fatigue Life Prediction in Torsional Loading

Expand
  • (School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China)

Received date: 2019-08-25

  Online published: 2021-12-01

Abstract

Considering the situation that fatigue life prediction of notched component is an indispensable partin the process of design in engineering, it is necessary to find some ways to solve such problems effectively. Thestress and strain state of notched specimen is more complex, compared with smooth specimen. As a result, someresearchers take advantage of the finite element method to analyze the mechanical properties of these kind ofspecimens, they can get the stress and strain state at the dangerous point directly instead of using theoreticalmethods. At the same time, the equation of shear stress is fitted by analyzing stress distribution of the section ofnotch root. The integral of shear stress in the section is equal to the external load, and the true stress value ofnotch root is derived. Then, the fatigue damage evolution equation of notched specimens under torsional load isproposed based on the closed-form solution in this paper. Meanwhile, the nonlinear fatigue life prediction model ofnotched specimens under the torsional load is given by using the damage mechanics theory. The proposed modelis validated by experimental data (30CrMnSiNi2A steel and 45# steel). The results show that the predicted lifeis not only close to the experimental results, but also tends to be safe. The fatigue life of notched specimen ispredicted by using notch geometric parameters and material constants. The model has more concise calculationprocess, avoids complicated fatigue tests, and facilitates engineering application.

Cite this article

LIU Jianhui (刘俭辉), L ¨U Xin (吕鑫), WEI Yaobing∗ (韦尧兵),ZHANG Rupeng (张如鹏), ZHANG Yonggui (张永贵) . Notched Component Fatigue Life Prediction in Torsional Loading[J]. Journal of Shanghai Jiaotong University(Science), 2021 , 26(6) : 813 -818 . DOI: 10.1007/s12204-020-2247-3

References

[1] PETRUCCI G, ZUCCARELLO B. Fatigue life predictionunder wide band random loading [J]. Fatigue &Fracture of Engineering Materials & Structures, 2004,27(12): 1183-1195. [2] YOUSEFI F, WITT M, ZENNER H. Fatigue strengthof welded joints under multiaxial loading: Experimentsand calculations [J]. Fatigue & Fracture of EngineeringMaterials & Structures, 2001, 24(5): 339-355. [3] BERETTA S, FOLETTI S, VALIULLIN K. Fatiguestrength for small shallow defects/cracks in torsion [J].International Journal of Fatigue, 2011, 33(3): 287-299. [4] SAVRUK M P, KAZBERUK A. Stress concentrationnear sharp and rounded V-notches in orthotropic andquasi-orthotropic bodies [J]. Theoretical and AppliedFracture Mechanics, 2016, 84: 166-176. [5] FAJDIGA G, SRAML M. Fatigue crack initiation andpropagation under cyclic contact loading [J]. EngineeringFracture Mechanics, 2009, 76(9): 1320-1335. [6] HIRAKATA H, TAKAHASHI Y, VAN TRUONG D,et al. Role of plasticity on interface crack initiationfrom a free edge and propagation in a nano-component[J]. International Journal of Fracture, 2007, 145(4):261-271. [7] TAYLOR D. A mechanistic approach to criticaldistancemethods in notch fatigue [J]. Fatigue & Fractureof Engineering Materials & Structures, 2001,24(4): 215-224. [8] BENEDETTI M, FONTANARI V, SANTUS C, et al.Notch fatigue behaviour of shot peened high-strengthaluminium alloys: Experiments and predictions usinga critical distance method [J]. International Journal ofFatigue, 2010, 32(10): 1600-1611. [9] SKORUPA M. Load interaction effects during fatiguecrack growth under variable amplitude loading: A literaturereview. Part II: Qualitative interpretation [J].Fatigue & Fracture of Engineering Materials & Structures,1999, 22(10): 905-926. [10] SAMIR A, SIMON A, SCHOLZ A, et al. Servicetypecreep-fatigue experiments with cruciform specimensand modelling of deformation [J]. InternationalJournal of Fatigue, 2006, 28(5/6): 643-651. [11] BRIGHENTI R, CARPINTERI A. A notchmultiaxial-fatigue approach based on damagemechanics [J]. International Journal of Fatigue, 2012,39: 122-133. [12] MARCINIAK Z, ROZUMEK D, MACHA E. Verificationof fatigue critical plane position according to varianceand damage accumulation methods under multiaxialloading [J]. International Journal of Fatigue,2014, 58: 84-93. [13] BARBU L G, OLLER S, MARTINEZ X, et al.High cycle fatigue simulation: A new stepwise loadadvancingstrategy [J]. Engineering Structures, 2015,97: 118-129. [14] EFTIS J, NEMES J A. Evolution equation for the voidvolume growth rate in a viscoplastic-damage constitutivemodel [J]. International Journal of Plasticity,1991, 7(4): 275-293. [15] ZHOU J P, LU Y C. A damage evolution equationof particle-filled composite materials [J]. EngineeringFracture Mechanics, 1991, 40(3): 499-506. [16] JUN Z, XING Z. The asymptotic study of fatigue crackgrowth based on damage mechanics [J]. EngineeringFracture Mechanics, 1995, 50(1): 131-141. [17] CHOW C L, WEI Y. A model of continuum damagemechanics for fatigue failure [J]. International Journalof Fracture, 1991, 50(4): 301-316. [18] GLINKA G, SHEN G, PLUMTREE A. A multiaxialfatigue strain energy density parameter related to thecritical fracture plane [J]. Fatigue & Fracture of EngineeringMaterials & Structures, 1995, 18(1): 37-46. [19] KACHANOV L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999,97(1/2/3/4): 11-18. [20] QIU J, SETH B B, LIANG S Y, et al. Damage mechanicsapproach for bearing lifetime prognostics [J]. MechanicalSystems and Signal Processing, 2002, 16(5):817-829. [21] RABOTNOV Y N. On the equations of state for creep[J]. Proceedings of the Institution of Mechanical Engineers,Conference Proceeding, 1963, 178(1): 117-122. [22] LEMAITRE J. A continuous damage mechanics modelfor ductile fracture [J]. Journal of Engineering Materials& Technology, 1985, 107(1): 83-89. [23] LEMAITRE J, DESMORAT R. Engineering damagemechanics [M]. Berlin: Springer, 2005. [24] LEMAITRE J, PLUMTREE A. Application of damageconcepts to predict creep-fatigue failures [J]. Journalof Engineering Materials and Technology, 1979,101(3): 284-292. [25] CHABOCHE J L. A review of some plasticity andviscoplasticity constitutive theories [J]. InternationalJournal of Plasticity, 2008, 24(10): 1642-1693. [26] CHEN J, DING Z, YIN Z, et al. Study on low-cyclefatigue experiments and life prediction of single crystalnickel-based superalloys under asymmetrical cyclicload [J]. Acta Mechanica Solida Sinica, 2007, 28(2):115-120 (in Chinese). [27] LIU J H, WEI Y B, YAN C F, et al. Method for predictingcrack initiation life of notched specimen basedon damage mechanics [J]. Journal of Shanghai JiaoTong University (Science), 2018, 23(2): 286-290. [28] YIP M C, JEN Y M. Notch effect on two-level cumulativelow-cycle fatigue life under different biaxialloading mode sequences [J]. Fatigue & Fracture of EngineeringMaterials & Structures, 1995, 18(11): 1323-1332. [29] HU Y D, HU Z Z, CAO S Z. Theoretical study onManson-Coffin equation for physically short cracks andlifetime prediction [J]. Science China TechnologicalSciences, 2012, 55(1): 34-42. [30] HUANG X Z. Experimental study on the effectof mean shear stress on torsional fatigue strengthof 30CrMnSiNi2A material [J]. Mechanical Strength,1987(1): 51-56 (in Chinese). [31] YUAN Y Z, ZHAO M Y, ZHANG C P. Axial fatigueand torsion fatigue behavior on V-notch of 45 steel [J].Transactions of Materials and Heat Treatment, 2014,35(10): 103-107 (in Chinese). [1] PETRUCCI G, ZUCCARELLO B. Fatigue life predictionunder wide band random loading [J]. Fatigue &Fracture of Engineering Materials & Structures, 2004,27(12): 1183-1195. [2] YOUSEFI F, WITT M, ZENNER H. Fatigue strengthof welded joints under multiaxial loading: Experimentsand calculations [J]. Fatigue & Fracture of EngineeringMaterials & Structures, 2001, 24(5): 339-355. [3] BERETTA S, FOLETTI S, VALIULLIN K. Fatiguestrength for small shallow defects/cracks in torsion [J].International Journal of Fatigue, 2011, 33(3): 287-299. [4] SAVRUK M P, KAZBERUK A. Stress concentrationnear sharp and rounded V-notches in orthotropic andquasi-orthotropic bodies [J]. Theoretical and AppliedFracture Mechanics, 2016, 84: 166-176. [5] FAJDIGA G, SRAML M. Fatigue crack initiation andpropagation under cyclic contact loading [J]. EngineeringFracture Mechanics, 2009, 76(9): 1320-1335. [6] HIRAKATA H, TAKAHASHI Y, VAN TRUONG D,et al. Role of plasticity on interface crack initiationfrom a free edge and propagation in a nano-component[J]. International Journal of Fracture, 2007, 145(4):261-271. [7] TAYLOR D. A mechanistic approach to criticaldistancemethods in notch fatigue [J]. Fatigue & Fractureof Engineering Materials & Structures, 2001,24(4): 215-224. [8] BENEDETTI M, FONTANARI V, SANTUS C, et al.Notch fatigue behaviour of shot peened high-strengthaluminium alloys: Experiments and predictions usinga critical distance method [J]. International Journal ofFatigue, 2010, 32(10): 1600-1611. [9] SKORUPA M. Load interaction effects during fatiguecrack growth under variable amplitude loading: A literaturereview. Part II: Qualitative interpretation [J].Fatigue & Fracture of Engineering Materials & Structures,1999, 22(10): 905-926. [10] SAMIR A, SIMON A, SCHOLZ A, et al. Servicetypecreep-fatigue experiments with cruciform specimensand modelling of deformation [J]. InternationalJournal of Fatigue, 2006, 28(5/6): 643-651. [11] BRIGHENTI R, CARPINTERI A. A notchmultiaxial-fatigue approach based on damagemechanics [J]. International Journal of Fatigue, 2012,39: 122-133. [12] MARCINIAK Z, ROZUMEK D, MACHA E. Verificationof fatigue critical plane position according to varianceand damage accumulation methods under multiaxialloading [J]. International Journal of Fatigue,2014, 58: 84-93. [13] BARBU L G, OLLER S, MARTINEZ X, et al.High cycle fatigue simulation: A new stepwise loadadvancingstrategy [J]. Engineering Structures, 2015,97: 118-129. [14] EFTIS J, NEMES J A. Evolution equation for the voidvolume growth rate in a viscoplastic-damage constitutivemodel [J]. International Journal of Plasticity,1991, 7(4): 275-293. [15] ZHOU J P, LU Y C. A damage evolution equationof particle-filled composite materials [J]. EngineeringFracture Mechanics, 1991, 40(3): 499-506. [16] JUN Z, XING Z. The asymptotic study of fatigue crackgrowth based on damage mechanics [J]. EngineeringFracture Mechanics, 1995, 50(1): 131-141. [17] CHOW C L, WEI Y. A model of continuum damagemechanics for fatigue failure [J]. International Journalof Fracture, 1991, 50(4): 301-316. [18] GLINKA G, SHEN G, PLUMTREE A. A multiaxialfatigue strain energy density parameter related to thecritical fracture plane [J]. Fatigue & Fracture of EngineeringMaterials & Structures, 1995, 18(1): 37-46. [19] KACHANOV L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999,97(1/2/3/4): 11-18. [20] QIU J, SETH B B, LIANG S Y, et al. Damage mechanicsapproach for bearing lifetime prognostics [J]. MechanicalSystems and Signal Processing, 2002, 16(5):817-829. [21] RABOTNOV Y N. On the equations of state for creep[J]. Proceedings of the Institution of Mechanical Engineers,Conference Proceeding, 1963, 178(1): 117-122. [22] LEMAITRE J. A continuous damage mechanics modelfor ductile fracture [J]. Journal of Engineering Materials& Technology, 1985, 107(1): 83-89. [23] LEMAITRE J, DESMORAT R. Engineering damagemechanics [M]. Berlin: Springer, 2005. [24] LEMAITRE J, PLUMTREE A. Application of damageconcepts to predict creep-fatigue failures [J]. Journalof Engineering Materials and Technology, 1979,101(3): 284-292. [25] CHABOCHE J L. A review of some plasticity andviscoplasticity constitutive theories [J]. InternationalJournal of Plasticity, 2008, 24(10): 1642-1693. [26] CHEN J, DING Z, YIN Z, et al. Study on low-cyclefatigue experiments and life prediction of single crystalnickel-based superalloys under asymmetrical cyclicload [J]. Acta Mechanica Solida Sinica, 2007, 28(2):115-120 (in Chinese). [27] LIU J H, WEI Y B, YAN C F, et al. Method for predictingcrack initiation life of notched specimen basedon damage mechanics [J]. Journal of Shanghai JiaoTong University (Science), 2018, 23(2): 286-290. [28] YIP M C, JEN Y M. Notch effect on two-level cumulativelow-cycle fatigue life under different biaxialloading mode sequences [J]. Fatigue & Fracture of EngineeringMaterials & Structures, 1995, 18(11): 1323-1332. [29] HU Y D, HU Z Z, CAO S Z. Theoretical study onManson-Coffin equation for physically short cracks andlifetime prediction [J]. Science China TechnologicalSciences, 2012, 55(1): 34-42. [30] HUANG X Z. Experimental study on the effectof mean shear stress on torsional fatigue strengthof 30CrMnSiNi2A material [J]. Mechanical Strength,1987(1): 51-56 (in Chinese). [31] YUAN Y Z, ZHAO M Y, ZHANG C P. Axial fatigueand torsion fatigue behavior on V-notch of 45 steel [J].Transactions of Materials and Heat Treatment, 2014,35(10): 103-107 (in Chinese).
Outlines

/