[1] ZHOU B, YOON S H, LENG J S. A three-dimensionalconstitutive model for shape memory alloy [J]. SmartMaterials and Structures, 2009, 18(9): 095016.
[2] RULAND A, TAYLOR J M, ZILLINGER C. Convexintegration arising in the modelling of shape-memoryalloys: Some remarks on rigidity, flexibility and somenumerical implementations [J]. Journal of NonlinearScience, 2019, 29: 2137-2184.
[3] DELLA PORTA F. Analysis of a moving mask hypothesisfor martensitic transformations [J]. Journalof Nonlinear Science, 2019, 29: 2341-2384.
[4] TANAKA K. Thermomechanical sketch of shape memoryeffect: One-dimensional tensile behavior [J]. ResMechanica: International Journal of Structural Mechanicsand Materials Science, 1986, 18(3): 251-263.
[5] LIANG C, ROGERS C A. One-dimensional thermomechanicalconstitutive relations for shape memorymaterials [J]. Journal of Intelligent Material Systemsand Structures, 1990, 1(2): 207-234.
[6] BOYD J G, LAGOUDAS D C. Thermomechanical responseof shape memory composites [J]. Journal of IntelligentMaterial Systems and Structures, 1994, 5(3):333-346.
[7] BRINSON L C. One-dimensional constitutive behaviorof shape memory alloys: Thermomechanical derivationwith non-constant material functions and redefinedmartensite internal variable [J]. Journal of IntelligentMaterial Systems and Structures, 1993, 4(2):229-242.
[8] LIM T J, MCDOWELL D L. Mechanical behavior ofan Ni-Ti shape memory alloy under axial-torsional proportionaland nonproportional loading [J]. Journal ofEngineering Materials and Technology, 1999, 121(1):9-18.
[9] PENG X, YANG Y, HUANG S. A comprehensive descriptionfor shape memory alloys with a two-phaseconstitutive model [J]. International Journal of Solidsand Structures, 2001, 38(38/39): 6925-6940.
[10] ZHOU B, YOON S H. A new phase transformationconstitutive model of shape memory alloys [J]. SmartMaterials and Structures, 2006, 15(6): 1967-1973.
[11] MIRZAEIFAR R, DESROCHES R, YAVARI A. Acombined analytical, numerical, and experimentalstudy of shape-memory-alloy helical springs [J]. InternationalJournal of Solids and Structures, 2011,48(3/4): 611-624.
[12] MERZOUKI T, DUVAL A, BEN ZINEB T. Finite Elementanalysis of a shape memory alloy actuator fora micropump [J]. Simulation Modelling Practice andTheory, 2012, 27: 112-126.
[13] CHEMISKY Y, CHATZIGEORGIOU G, KUMAR P,et al. A constitutive model for cyclic actuation of hightemperatureshape memory alloys [J]. Mechanics ofMaterials, 2014, 68: 120-136.
[14] GU X, ZAKI W, MORIN C, et al. Time integrationand assessment of a model for shape memory alloysconsidering multiaxial nonproportional loading cases[J]. International Journal of Solids and Structures,2015, 54: 82-99.
[15] HAZAR S, ZAKI W, MOUMNI Z, et al. Modeling ofsteady-state crack growth in shape memory alloys usinga stationary method [J]. International Journal ofPlasticity, 2015, 67: 26-38.
[16] PERAZA HERNANDEZ E A, KIEFER B, HARTL DJ, et al. Analytical investigation of structurally stableconfigurations in shape memory alloy-actuated plates[J]. International Journal of Solids and Structures,2015, 69/70: 442-458.
[17] LONG X, PENG X, FU T, et al. A micro-macrodescription for pseudoelasticity of NiTi SMAs subjectedto nonproportional deformations [J]. InternationalJournal of Plasticity, 2017, 90: 44-65.
[18] KANG Z T, ZHOU B, XUE S F. Finite element numericalsimulation on thermo-mechanical coupling behaviorin shape memory alloy pipe connection [J]. Journalof Mechanical Engineering, 2018, 54(18): 68-75 (inChinese).
[19] ARMATTOE K M, BOUBY C, HABOUSSI M, et al.Modeling of latent heat effects on phase transformationin shape memory alloy thin structures [J]. InternationalJournal of Solids and Structures, 2016, 88/89:283-295.
[20] WANG J, MOUMNI Z, ZHANG W, et al. A thermomechanicallycoupled finite deformation constitutivemodel for shape memory alloys based on Henckystrain [J]. International Journal of Engineering Science,2017, 117: 51-77.
[21] LEI H S, WANG Z Q, ZHOU B, et al. Simulationand analysis of shape memory alloy fiber reinforcedcomposite based on cohesive zone model [J]. Materials& Design, 2012, 40: 138-147.
[22] GU D, HE B. Finite element simulation and experimentalinvestigation of residual stresses in selectivelaser melted Ti-Ni shape memory alloy [J]. ComputationalMaterials Science, 2016, 117: 221-232.
[23] ARMATTOE K M, HABOUSSI M, BEN ZINEB T.A 2D finite element based on a nonlocal constitutivemodel describing localization and propagation of phasetransformation in shape memory alloy thin structures[J]. International Journal of Solids and Structures,2014, 51(6): 1208-1220.
[24] HASSANLI S, SAMALI B. Buckling analysis of laminatedcomposite curved panels reinforced with linearand non-linear distribution of Shape Memory Alloys[J]. Thin-Walled Structures, 2016, 106: 9-17.
[25] HATEFI ARDAKANI S, AFSHAR A,MOHAMMADIS. Numerical study of thermo-mechanical coupling effectson crack tip fields of mixed-mode fracture in pseudoelasticshape memory alloys [J]. International Journalof Solids and Structures, 2016, 81: 160-178.
[26] JIANG D J, BECHLE N J, LANDIS C M, et al. Bucklingand recovery of NiTi tubes under axial compression[J]. International Journal of Solids and Structures,2016, 80: 52-63.
[27] KATANCHI B, CHOUPANI N, KHALIL-ALLAFI J,et al. Photostress analysis of stress-induced martensitephase transformation in superelastic NiTi [J]. MaterialsScience and Engineering: A, 2017, 688: 202-209.
[28] ZHANG Y Q, JIANG S Y, ZHAO Y N, et al. Simulationof isothermal precision extrusion of NiTi shapememory alloy pipe coupling by combining finite elementmethod with cellular automaton [J]. Journal ofCentral South University, 2017, 24: 506-514.
[29] YU C, KANG G Z, KAN Q H, et al. A micromechanicalconstitutive model based on crystal plasticity forthermo-mechanical cyclic deformation of NiTi shapememory alloys [J]. International Journal of Plasticity,2013, 44: 161-191.
[30] YU C, KANG G Z, KAN Q H. A micromechanicalconstitutive model for anisotropic cyclic deformation ofsuper-elastic NiTi shape memory alloy single crystals[J]. Journal of the Mechanics and Physics of Solids,2015, 82: 97-136.
[31] ASHRAFI M J, ARGHAVANI J, NAGHDABADI R,et al. Theoretical and numerical modeling of dense andporous shape memory alloys accounting for couplingeffects of plasticity and transformation [J]. InternationalJournal of Solids and Structures, 2016, 88/89:248-262.
[32] PARANJAPE H M, MANCHIRAJU S, ANDERSONP M. A phase field - Finite element approach to modelthe interaction between phase transformations andplasticity in shape memory alloys [J]. InternationalJournal of Plasticity, 2016, 80: 1-18.
[33] HU L, JIANG S, SHI L, et al. Prediction of grain scaleplasticity of NiTi shape memory alloy based on crystalplasticity finite element method [J]. Transactions ofNonferrous Metals Society of China, 2019, 29(4): 775-784.
[34] CISS′E C, ZAKIW, GU X, et al. A nonlinear 3D modelfor iron-based shape memory alloys considering differentthermomechanical properties for austenite andmartensite and coupling between transformation andplasticity [J]. Mechanics of Materials, 2017, 107: 1-21.
[35] WANG X M, XU B X, YUE Z F. Micromechanicalmodelling of the effect of plastic deformation on themechanical behaviour in pseudoelastic shape memoryalloys [J]. International Journal of Plasticity, 2008,24(8): 1307-1332.
[36] ZHOU B. A macroscopic constitutive model of shapememory alloy considering plasticity [J]. Mechanics ofMaterials, 2012, 48: 71-81.