Intelligent Connected Vehicle

Efficient Online Vehicle Tracking for Real–Virtual Mapping Systems

Expand
  • (1. School of Software, Shanghai Jiao Tong University, Shanghai 200240, China;2. Shanghai International Automobile City (Group) Co., Ltd., Shanghai 201805, China)

Received date: 2021-02-08

  Online published: 2021-10-28

Abstract

Multi-object tracking is a vital problem as many applications require better tracking approaches. Although learning-based detectors are becoming extremely powerful, there are few tracking methods designed to work with them in real time. We explored an effcient fiexible online vehicle tracking-by-detection framework suitable for real–virtual mapping systems, which combines a non-recursive temporal window search with delayed output and produces stable trajectories despite noisy detection responses. Its computation speed meets the real-time requirements, whereas its performance is comparable with that of state-of-the-art online trackers on the DETRAC dataset. The trajectories from our approach also contain the target class and color information important for virtual vehicle motion reconstruction.

Cite this article

CHEN Jiacheng (陈佳诚), LI Lin(李 霖), YANG Xubo (杨旭波) . Efficient Online Vehicle Tracking for Real–Virtual Mapping Systems[J]. Journal of Shanghai Jiaotong University(Science), 2021 , 26(5) : 598 -606 . DOI: 10.1007/s12204-021-2349-6

References

[1] BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking [C]//2016 IEEE International Conference on Image Processing (ICIP). Phoenix, AZ: IEEE, 2016: 3464-3468. [2] HUANG C, WU B, NEVATIA R. Robust object tracking by hierarchical association of detection re-sponses [C]//European Conference on Computer Vi-sion. Berlin, Heidelberg: Springer, 2008: 788-801. [3] BREITENSTEIN M D, REICHLIN F, LEIBE B, et al. Robust tracking-by-detection using a detector con?-dence particle ?lter [C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 1515-1522. [4] ANDRIYENKO A, SCHINDLER K. Globally op-timal multi-target tracking on a hexagonal lat-tice [C]//European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2010: 466-479. [5] BERCLAZ J, FLEURET F, TURETKEN E, et al. Multiple object tracking using K-shortest paths opti-mization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(9): 1806-1819. [6] PIRSIAVASH H, RAMANAN D, FOWLKES C C. Globally-optimal greedy algorithms for tracking a vari-able number of objects [C]//2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO: IEEE, 2011: 1201-1208. [7] ANDRIYENKO A, SCHINDLER K. Multi-target tracking by continuous energy minimization [C]//2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO: IEEE, 2011: 1265-1272. [8] MILAN A, ROTH S, SCHINDLER K. Continuous en-ergy minimization for multitarget tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 2014, 36(1): 58-72. [9] LEE B, ERDENEE E, JIN S, et al. Multi-class multi-object tracking using changing point detec-tion [C]//European Conference on Computer Vision. Cham: Springer, 2016: 68-83. [10] BENFOLD B, REID I. Stable multi-target tracking in real-time surveillance video [C]//2011 IEEE Con-ference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO: IEEE, 2011: 3457-3464. [11] BREITENSTEIN M D, REICHLIN F, LEIBE B, et al. Online multiperson tracking-by-detection from a single, uncalibrated camera [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(9): 1820-1833. [12] BAE S H, YOON K J. Robust online multi-object tracking based on tracklet con?dence and online dis-criminative appearance learning [C]//2014 IEEE Con-ference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH: IEEE, 2014: 1218-1225. [13] XIANG Y, ALAHI A, SAVARESE S. Learning to track: Online multi-object tracking by decision mak-ing [C]//2015 IEEE International Conference on Com-puter Vision (ICCV ). Santiago: IEEE, 2015: 4705-4713. [14] MILANA,REZATOFIGHIS H,DICK A,et al. Online multi-target tracking using recurrent neural networks [C]//Thirty-First AAAI Conference on Arti?cial Intel-ligence (AAAI-17 ). San Francisco California: AAAI, 2017: 4225-4232. [15] BOCHINSKI E, EISELEIN V, SIKORA T. High-speed tracking-by-detection without using image information [C]//2017 14th IEEE International Conference on Ad-vanced Video and Signal Based Surveillance (AVSS ). Lecce: IEEE, 2017: 1-6. [16] BOCHINSKI E, SENST T, SIKORA T. Extending IOU based multi-object tracking by visual information [C]//2018 15th IEEE International Conference on Ad-vanced Video and Signal Based Surveillance (AVSS ). Auckland: IEEE, 2018: 1-6. [17] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric [C]//2017 IEEE International Conference on Image Processing (ICIP). Beijing: IEEE, 2017: 3645-3649. [18] WEN L Y, DU D W, CAI Z W, et al. UA-DETRAC: A new benchmark and protocol for multi-object de-tection and tracking [J]. Computer Vision and Image Understanding, 2020, 193: 102907. [19] LYU S W, CHANG M C, DU D W, et al. UA-DETRAC 2018: Report of AVSS2018 & IWT4S chal-lenge on advanced tra?c monitoring [C]//2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS ). Auckland: IEEE, 2018: 1-6. [20] NAPHADE M, ANASTASIU D C, SHARMA A, et al. The NVIDIA AI City challenge [C]//2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, In-ternet of People and Smart City Innovation. San Fran-cisco, CA: IEEE, 2017: 1-6. [21] NAPHADE M, CHANG M C, SHARMA A, et al. The 2018 NVIDIA AI City challenge [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion Workshops (CVPRW ). Salt Lake City, UT: IEEE, 2018: 53-537. [22] NAPHADE M, WANG S, ANASTASIU D C, et al. The 4th AI City challenge [C]//2020 IEEE/CVF Con-ference on Computer Vision and Pattern Recogni-tion Workshops (CVPRW ). Seattle, WA: IEEE, 2020: 2665-2674. [23] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Uni?ed, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV: IEEE, 2016: 779-788. [25] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [M]//Computer vision–ECCV 2016. Cham: Springer International Publishing, 2016: 21- 37. [26] OH S, RUSSELL S, SASTRY S. Markov chain Monte Carlo data association for general multiple-target tracking problems [C]// 2004 43rd IEEE Confer-ence on Decision and Control (CDC)(IEEE Cat. No.04CH37601 ). Nassau: IEEE, 2004: 735-742. challenge 2018 [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW ). Salt Lake City, UT: IEEE, 2018: 77-777. [28] DUBSK ′AM,HEROUTA,JUR′ANEK R, et al. Fully automatic roadside camera calibration for traf-?c surveillance [J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1162-1171. [29] DUBSKA′ M, HEROUT A, SOCHOR J. Automatic camera calibration for tra?c understanding [EB/OL].[2021-02-08]. http://dx.doi.org/10.5244/C.28.42. [30] TANG Z, WANG G A, XIAO H, et al. Single-camera and inter-camera vehicle tracking and 3D speed esti-mation based on fusion of visual and semantic features [C]//2018 IEEE/CVF Conference on Computer Vi-sion and Pattern Recognition Workshops (CVPRW ). Salt Lake City, UT: IEEE, 2018: 108-1087. [31] HUA S, KAPOOR M, ANASTASIU D C. Vehicle tracking and speed estimation from tra?c videos [C]//2018 IEEE/CVF Conference on Computer Vi-sion and Pattern Recognition Workshops (CVPRW ). Salt Lake City, UT: IEEE, 2018: 153-1537. [32] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box re-gression [J]. Proceedings of the AAAI Conference on Arti?cial Intelligence, 2020, 34(7): 12993-13000. [33] BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: The CLEAR MOT metrics [J]. EURASIP Journal on Image and Video Processing, 2008, 2008: 1-10. [34] WANG L, LU Y, WANG H, et al. Evolving boxes for fast vehicle detection [C]//2017 IEEE International Conference on Multimedia and Expo (ICME ). Hong Kong: IEEE, 2017: 1135-1140. [35] HEKM,GKIOXARIG,DOLLA′ R P, et al. Mask R- CNN [C]//2017 IEEE International Conference on Computer Vision (ICCV ). Venice: IEEE, 2017: 2980-2988.
Outlines

/