[1] KHAN L A K, BRADNOCK T J, SCOTT C, et al. Fractures of the clavicle [J]. The Journal of Bone and Joint Surgery -American Volume, 2009, 91(2): 447- 460.
[2] NOWAK J, MALLMIN H, LARSSON S. The aetiology and epidemiology of clavicular fractures: A prospective study during a two-year period in Uppsala, Sweden [J]. Injury, 2000, 31(5): 353-358.
[3] VANDER HAVE K L, PERDUE A M, CAIRD M S, et al. Operative versus nonoperative treatment of midshaft clavicle fractures in adolescents [J]. Journal of Pediatric Orthopedics, 2010, 30(4): 307-312.
[4] Canadian Orthopaedic Trauma Society. Nonoperative treatment compared with plate fixation of displaced midshaft clavicular fractures [J]. The Journal of Bone & Joint Surgery, 2007, 89(1): 1-10.
[5] KULSHRESTHA V, ROY T, AUDIGE L. Operative versus nonoperative management of displaced midshaft clavicle fractures: A prospective cohort study [J]. Journal of Orthopaedic Trauma, 2011, 25(1): 31-38.
[6] MIRZATOLOOEI F. Comparison between operative and nonoperative treatment methods in the management of comminuted fractures of the clavicle [J]. Acta Orthopaedica et Traumatologica Turcica, 2011, 45(1): 34-40.
[7] NI M, NIU W X, WONG D W C, et al. Finite element analysis of locking plate and two types of intramedullary nails for treating mid-shaft clavicle fractures [J]. Injury, 2016, 47(8): 1618-1623.
[8] ZLOWODZKI M, ZELLE B A, COLE P A, et al. Treatment of acute midshaft clavicle fractures: Systematic review of 2 144 fractures: On behalf of the Evidence-Based Orthopaedic Trauma Working Group [J]. Journal of Orthopaedic Trauma, 2005, 19(7): 504- 507.
[9] PENGRUNG N, LAKDEE N, PUNCREOBUTR C, et al. Finite element analysis comparison between superior clavicle locking plate with and without screw holes above fracture zone in midshaft clavicular fracture [J]. BMC Musculoskeletal Disorders, 2019, 20(1): 465.
[10] NIINOMI M, NAKAI M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone [J]. International Journal of Biomaterials, 2011, 2011: 836587.
[11] GARDNER M J, EVANS J M, DUNBAR R P. Failure of fracture plate fixation [J]. The Journal of the American Academy of Orthopaedic Surgeons, 2009, 17(10): 647-657.
[12] LAU T W, LEUNG F, CHAN C F, et al. Wound complication of minimally invasive plate osteosynthesis in distal tibia fractures [J]. International Orthopaedics, 2007, 32(5): 697-703. [13] HAASE K, ROUHI G. A discussion on plating factors that affect stress shielding using finite element analysis [J]. Journal of Biomechanical Science and Engineering, 2010, 5(2): 129-141.
[14] LI J L, QIN L, YANG K, et al. Materials evolution of bone plates for internal fixation of bone fractures: A review [J]. Journal of Materials Science & Technology, 2020, 36: 190-208. [15] STAIGER M P, PIETAK A M, HUADMAI J, et al. Magnesium and its alloys as orthopedic biomaterials: A review [J]. Biomaterials, 2006, 27(9): 1728-1734.
[16] FANG R X, JI A M, ZHAO Z H, et al. A regression orthogonal biomechanical analysis of internal fixation for femoral shaft fracture [J]. Biocybernetics and Biomedical Engineering, 2020, 40(3): 1277-1290.
[17] LIU P C, YANG Y J, LIU R, et al. A study on the mechanical characteristics of the EBM-printed Ti-6Al-4V LCP plates in vitro [J]. Journal of Orthopaedic Surgery and Research, 2014, 9(1): 106.
[18] ZENG L Q, WEI H F, LIU Y J, et al. Titanium elastic nail (TEN) versus reconstruction plate repair of midshaft clavicular fractures: A finite element study [J]. PLoS One, 2015, 10(5): e0126131.
[19] ˇSEˇSOK A, VAITIEK¯UNAS M. Modelling of bone fixation plate from biodegradable magnesium alloy [J]. Mokslas - Lietuvos Ateitis/Science -Future of Lithuania, 2019, 11: mla.2019.7092
[20] FAVRE P, KLOEN P, HELFET D L, et al. Superior versus anteroinferior plating of the clavicle: A finite element study [J]. Journal of Orthopaedic Trauma, 2011, 25(11): 661-665. [21] RHO J Y, HOBATHO M C, ASHMAN R B. Relations of mechanical properties to density and CT numbers in human bone [J]. Medical Engineering & Physics, 1995, 17(5): 347-355. [22] DROSDOWECH D S, MANWELL S E, FERREIRA L M, et al. Biomechanical analysis of fixation of middle third fractures of the clavicle [J]. Journal of Orthopaedic Trauma, 2011, 25(1): 39-43.
[23] CRONSK¨AR M, RASMUSSEN J, TINNSTEN M. Combined finite element and multibody musculoskeletal investigation of a fractured clavicle with reconstruction plate [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18(7): 740-748.
[24] TOKSVIG-LARSEN S, RYD L. Surface characteristics following tibial preparation during total knee arthroplasty [J]. The Journal of Arthroplasty, 1994, 9(1): 63-66.
[25] CHIU Y C, HUANG K C, SHIH C M, et al. Comparison of implant failure rates of different plates for midshaft clavicular fractures based on fracture classifications [J]. Journal of Orthopaedic Surgery and Research, 2019, 14(1): 220.
[26] ZHANG X J, CHENG X D, YIN B, et al. Finite element analysis of spiral plate and Herbert screw fixation for treatment of midshaft clavicle fractures [J]. Medicine, 2019, 98(34): e16898. [27] WILSON D J, WEAVER D L, BALOG T P, et al. Early postoperative failure of a new intramedullary fixation device for midshaft clavicle fractures [J]. Orthopedics, 2013, 36(11): e1450-e1453.
[28] CHEN J H, LIU C, YOU L D, et al. Boning up on Wolff’s Law: Mechanical regulation of the cells that make and maintain bone [J]. Journal of Biomechanics, 2010, 43(1): 108-118.
[29] WU Z Y, LIU Y P, SINGARE S, et al. Animal model for evaluation of strain gauge in mandibular distraction osteogenesis in rabbits [J]. British Journal of Oral and Maxillofacial Surgery, 2007, 45(8): 633-636.
[30] ZHANG F X, CHEN F C, QI Y H, et al. Finite element analysis of dual small plate fixation and single plate fixation for treatment of midshaft clavicle fractures [J]. Journal of Orthopaedic Surgery and Research, 2020, 15(1): 148.