[1] SICILIANO B, SCIAVICCO L, VILLANI L, et al.Robotics: Modelling, planning and control [M]. London,UK: Springer-Verlag, 2009.
[2] SPONG M W. Modeling and control of elastic joint robots [J]. Journal of Dynamic Systems, Measurement,and Control, 1987, 109(4): 310-318.
[3] SPONG M W, KHORASANI K, KOKOTOVIC P V.An integral manifold approach to the feedback control of flexible joint robots [J]. IEEE Journal of Robotics and Automation, 1987, 3(4): 291-300.
[4] KHORASANI K. Nonlinear feedback control of flexible joint manipulators: A single link case study[J]. IEEE Transactions on Automatic Control, 1990,35(10): 1145-1149.
[5] RUDERMAN M. Compensation of nonlinear torsion in flexible joint robots: Comparison of two approaches[J]. IEEE Transactions on Industrial Electronics, 2016,63(9): 5744-5751.
[6] GUO C Q, GAO H B, NI F L, et al. A vibration suppression method for flexible joints manipulator based on trajectory optimization [C]//Proceedings of 2016 IEEE International Conference on Mechatronics and Automation. Harbin, China: IEEE, 2016: 338-343.
[7] NAIDU D S. Singular perturbation analysis of a flexible beam used in underwater exploration [J]. International Journal of Systems Science, 2011, 42(1): 183-194.
[8] CHAOUI H, SICARD P. Adaptive neural network control of flexible-joint robotic manipulators with friction and disturbance [C]//IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society. Montreal,Quebec, Canada: IEEE, 2012: 2644-2649.
[9] MACNAB C J B. Improved output tracking of a flexible-joint arm using neural networks [J]. Neural Processing Letters, 2010, 32(2): 201-218.
[10] SUBUDHI B, MORRIS A S. Singular perturbation approach to trajectory tracking of flexible robot with joint elasticity [J]. International Journal of Systems Science, 2003, 34(3): 167-179.
[11] KHORASANI K. Adaptive control of flexible-joint robots [C]//Proceedings of the 1991 IEEE International Conference on Robotics and Automation. Sacramento,California, USA: IEEE, 1991: 2127-2134.
[12] GE S S, POSTLETHWAITE I. Adaptive neural network controller design for flexible joint robots using singular perturbation technique [J]. Transactions of the Institute of Measurement and Control, 1995, 17(3):120-131.
[13] MIAO Z Q, WANG Y N. Robust dynamic surface control of flexible joint robots using recurrent neural networks[J]. Journal of Control Theory and Applications,2013, 11(2): 222-229.
[14] YEN H M, LI T H S, CHANG Y C. Adaptive neural network based tracking control for electrically driven flexible-joint robots without velocity measurements [J].Computers and Mathematics with Applications, 2012,64(5): 1022-1032.
[15] LOZANO R, BROGLIATO B. Adaptive control of robot manipulators with flexible joints [J]. IEEE Transactions on Automatic Control, 1992, 37(2): 174-181.
[16] FU Z J, XIE W F, HAN X, et al. Nonlinear systems identification and control via dynamic multitime scales neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(11): 1814-1823.
[17] ZHENG D D, XIE W F, REN X M, et al. Identification and control for singularly perturbed systems using multitime-scale neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2017,28(2): 321-333.
[18] GHORBEL F, HUNG J Y, SPONG M W. Adaptive control of flexible-joint manipulators [J]. IEEE Control Systems Magazine, 1989, 9(7): 9-13.
[19] ETXEBARRIA V, SANZ A, LIZARRAGA I. Control of a lightweight flexible robotic arm using sliding modes [J]. International Journal of Advanced Robotic Systems, 2005, 2(2): 103-110.
[20] ZHENG D D, XIE W F, CHAI T, et al. Identification and trajectory tracking control of nonlinear singularly perturbed system [J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3737-3747.