Maximizing quality factor (Q) is essential to improve the performance of micro hemispherical shell resonators (μHSRs) which can be used in microelectromechanical system (MEMS) gyroscopes to measure angular rotation. Several energy dissipation mechanisms limit Q, where thermoelastic dissipation (TED) is the major one and studied in this paper. Fully coupled thermo-mechanical equations for calculating TED are formulated, and then temperature distribution in a deformed μHSR and its quality factor related to TED (QTED) are obtained by solving the equations through a finite-element method (FEM). It has been found that different fabrication process conditions can obtain various geometrical parameters in our previous studies. In order to provide guidelines for the design and fabrication of μHSRs, the effects of their geometry on resonant frequency (f0) and QTED are studied. The change of anchor height and small enough anchor radius have no effect on both f0 and QTED, but the shell size including its radius, thickness and height has significant impact on f0 and QTED. It is found that whether a μHSR has lower f0 and higher QTED or higher f0 and higher QTED can be achieved by changing these geometrical parameters. The results presented in this paper can also be applied to other similar resonators.
FENG Jun, ZHANG Weiping, LIU Zhaoyang, GU Liutao, CHENG Yuxiang
. Thermoelastic Dissipation in Diamond Micro Hemispherical Shell Resonators[J]. Journal of Shanghai Jiaotong University(Science), 2020
, 25(3)
: 281
-287
.
DOI: 10.1007/s12204-020-2182-3
[1] TRUSOV A A, PHILLIPS M R, MCCAMMON G H, et al. Continuously self-calibrating CVG system using hemispherical resonator gyroscopes [C]//2015 IEEE International Symposium on Inertial Sensors and Systems (ISISS). Hapuna Beach, USA: IEEE,2015: 15112569. [2] CHALLONER A D, GE H H, LIU J Y. Boeing disc resonator gyroscope [C]//2014 IEEE/ION Position,Location and Navigation Symposium. Monterey, USA:IEEE, 2014: 504-514. [3] DARVISHIAN A, NAGOURNEY T, CHO J Y, et al.Thermoelastic dissipation in micromachined birdbath shell resonators [J]. Journal of Microelectromechanical Systems, 2017, 26(4): 758-772. [4] SORENSON L, SHAO P, AYAZI F. Bulk and surface thermoelastic dissipation in micro-hemispherical shell resonators [J]. Journal of Microelectromechanical Systems,2015, 24(2): 486-502. [5] KONG L, Research on structural mechanism and fabrication process of micro hemispherical resonator gyroscope[D]. Nanjing, China: Southeast University, 2015(in Chinese). [6] BASARAB M A, MATVEEV V A, LUNIN B S, et al. Influence of nonuniform thickness of hemispherical resonator gyro shell on its unbalance parameters [J].Gyroscopy and Navigation, 2017, 8(2): 97-103. [7] FAN S C, LIU G Y, WANG Z J. On flexural vibration of hemispherical shell [J]. Applied Mathematics and Mechanics, 1991, 12(10): 1023-1030. [8] BERNSTEIN J J, BANCU M G, COOK E H, et al. A MEMS diamond hemispherical resonator [J]. Journal of Micromechanics & Microengineering, 2013, 23(12):125007. [9] LIU Z Y, ZHANG W P, CUI F, et al. Fabrication and characterisation of microscale hemispherical shell resonator with diamond electrodes on the Si substrate [J].Micro & Nano Letters, 2019, 14(6): 674-677. [10] JIAO W J, SONG J, GUO F G. Thermoelastic damping of micro resonators operating in the longitudinal vibration mode: In comparison with the case of flexural vibration [J]. Mechanics Research Communications,2014, 62: 31-36. [11] HAO Z L. Thermoelastic damping in the contour-mode vibrations of micro- and nano-electromechanical circular thin-plate resonators [J]. Journal of Sound and Vibration, 2008, 313(1/2): 77-96. [12] DARVISHIAN A, SHIARI B, CHO J Y, et al. Investigation of thermoelastic loss mechanism in shell resonators [C]//ASME 2014 International Mechanical Engineering Congress and Exposition. Montreal,Canada: American Society of Mechanical Engineers,2014: 39331. [13] LIFSHITZ R, ROUKES M L. Thermoelastic damping in micro- and nanomechanical systems [J]. Physical Review B, 2000, 61(8): 5600-5609. [14] WONG S J, FOX C H J, MCWILLIAM S. Thermoelastic damping of the in-plane vibration of thin silicon rings [J]. Journal of Sound and Vibration, 2006,293(1): 266-285. [15] PAI P, CHOWDHURY F K, POURZAND H, et al. Fabrication and testing of hemispherical MEMS wineglass resonators [C]//2013 IEEE 26th International Conference on Micro Electro Mechanical Systems(MEMS). Taipei, China: IEEE, 2013: 677-680. [16] CHO J Y. High-performance micromachined vibratory rate- and rate-integrating gyroscopes [D]. Michigan,USA: The University of Michigan, 2012. [17] SORENSON L D, SHAO P, AYAZI F. Effect of thickness anisotropy on degenerate modes in oxide microhemispherical shell resonators [C]//2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). Taipei, China: IEEE, 2013: 169-172.