Composite Feedforward Compensation for Force Ripple in Permanent Magnet Linear Synchronous Motors

Expand
  • (1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; 2. School of Electrical Engineering, Southeast University, Nanjing 210096, China)

Online published: 2019-12-07

Abstract

This paper presents a method for compensating the force ripple in permanent magnet linear synchronous motors (PMLSMs) by adopting a composite feedforward compensation scheme. Firstly, the vector control system of PMLSMs is described, and various force disturbances influencing the electromagnetic thrust are analyzed. As a result, the mathematical model of the whole system considering the force ripple is established. Then, a novel composite feedforward compensation scheme is proposed, which consists of a recursive least squares (RLS) parameter identification component and two feedforward compensation loops corresponding to the reference position trajectory and the force ripple, respectively. Finally, the effectiveness and advantages of the proposed composite feedforward compensation are demonstrated by simulation. The main incentive of this paper is the combination with the composite feedforward compensation loop corresponding to the reference position trajectory to improve the compensation effect of force ripple in PMLSMs.

Cite this article

YANG Chunyu (杨春雨), CHE Zhiyuan (车志远), ZHOU Linna (周林娜) . Composite Feedforward Compensation for Force Ripple in Permanent Magnet Linear Synchronous Motors[J]. Journal of Shanghai Jiaotong University(Science), 2019 , 24(6) : 782 -788 . DOI: 10.1007/s12204-019-2111-5

References

[1] YUAN F, WANG X Y, TAO J F, et al. Research onvane end face of cam-rotor vane servo motor based ondisturbing torque [J]. Journal of Shanghai Jiao TongUniversity (Science), 2016, 21(6): 641-647. [2] PEI R L, ZENG L B, CHEN X, et al. Studies ofhigh-efficiency electrical steels used in electric vehiclemotors [J]. Journal of Shanghai Jiao Tong University(Science), 2012, 17(3): 319-322. [3] CHEN S Y, LIU T S. Intelligent tracking control of aPMLSM using self-evolving probabilistic fuzzy neuralnetwork [J]. IET Electric Power Applications, 2017,11(6): 1043-1054. [4] YANG C Y, MA T T, CHE Z Y, et al. An adaptivegainsliding mode observer for sensorless control of permanentmagnet linear synchronous motors [J]. IEEEAccess, 2018, 6: 3469-3478. [5] HOBURG J F. Modeling maglev passenger compartmentstatic magnetic fields from linear Halbachpermanent-magnet arrays [J]. IEEE Transactions onMagnetics, 2004, 40(1): 59-64. [6] RONG Z L, HUANG Q. A new PMSM speed modulationsystem with sliding mode based on activedisturbance-rejection control [J]. Journal of CentralSouth University, 2016, 23(6): 1406-1415. [7] XUE Y B, YAO Z Q, CHENG D, et al. Coast-downmodeling of canned motor based on torque behaviorstudy [J]. Journal of Shanghai Jiao Tong University(Science), 2015, 20(4): 420-426. [8] ZHANG Z J, ZHOU H B, DUAN J A, et al. Designand analysis of a new ring winding structure for permanentmagnet linear synchronous motors [J]. IEEETransactions on Plasma Science, 2016, 44(12): 3311-3321. [9] WANG M Y, LI L Y, PAN D H. Detent force compensationfor PMLSM systems based on structural designand control method combination [J]. IEEE Transactionson Industrial Electronics, 2015, 62(11): 6845-6854. [10] CHUNG S U, KIM J M, WOO B C, et al. Developmentof doubly salient permanent magnet linear synchronousmotor for general-purpose automation applications[J]. International Journal of Precision Engineeringand Manufacturing, 2013, 14(12): 2075-2080. [11] BARCARO M, BIANCHI N, MAGNUSSEN F. Remarkson torque estimation accuracy in fractional-slotpermanent-magnet motors [J]. IEEE Transactions onIndustrial Electronics, 2012, 59(6): 2565-2572. [12] CHUNG S U, KIM J M. Double-sided iron-corePMLSM mover teeth arrangement design for reductionof detent force and speed ripple [J]. IEEE Transactionson Industrial Electronics, 2016, 63(5): 3000-3008. [13] BANG D J, HWANG S H. Wide air-gap control formulti-module permanent magnet linear synchronousmotors without magnetic levitation windings [J]. Journalof Power Electronics, 2016, 16(5): 1773-1780. [14] CHO K, NAM K. Periodic learning disturbance observerbased precision motion control in PMLSM motionsystems considering long-term instability problem[J]. International Journal of Precision Engineering andManufacturing, 2016, 17(9): 1101-1112. [15] TAN K K, LEE T H, DOU H F, et al. Precisionmotion control with disturbance observer forpulsewidth-modulated-driven permanent-magnet linearmotors [J]. IEEE Transactions on Magnetics, 2003,39(3): 1813-1818. [16] CHEN S L, TAN K K, HUANG S N. Modeling andcompensation of ripples and friction in permanentmagnetlinear motor using a hysteretic relay [J].IEEE/ASME Transactions on Mechatronics, 2010,15(4): 586-594. [17] TAN K K, HUANG S N, LEE T H. Robust adaptivenumerical compensation for friction and force ripple inpermanent-magnet linear motors [J]. IEEE Transactionson Magnetics, 2002, 38(1): 221-228. [18] TAN K K, LEE T H, DOU H, et al. Force ripple suppressionin iron-core permanent magnet linear motorsusing an adaptive dither [J]. Journal of the FranklinInstitute, 2004, 341(4): 375-390. [19] BARATAM A, KARLAPUDY A M, MUNAGALA S.Implementation of thrust ripple reduction for a permanentmagnet linear synchronous motor using an adaptivefeed forward controller [J]. Journal of Power Electronics,2014, 14(4): 687-694. [20] ZHANG D L, CHEN Y P, AI W, et al. Force ripplesuppression technology for linear motors based onback propagation neural network [J]. Chinese Journalof Mechanical Engineering, 2008, 21(2): 13-16. [21] LU S W, TANG X Q, SONG B, et al. Identificationand compensation of force ripple in PMSLM using aJITL technique [J]. Asian Journal of Control, 2015,17(5): 1559-1568. [22] CHE Z Y, CHEN J Q, YANG C Y, et al. Permanentmagnet linear synchronous motor control system basedon sliding mode variable structure [J]. Electric Machines& Control Application, 2017, 44(10): 8-12 (inChinese). [23] BASCETTA L, ROCCO P, MAGNANI G. Force ripplecompensation in linear motors based on closed-loopposition-dependent identification [J]. IEEE/ASMETransactions on Mechatronics, 2010, 15(3): 349-359. [24] ZHANG D L, CHEN Y P, AI W, et al. Precision motioncontrol of permanent magnet linear motors [J]. InternationalJournal of Advanced Manufacturing Technology,2007, 35(3/4): 301-308. [25] ZHAO S, TAN K K. Adaptive feedforward compensationof force ripples in linear motors [J]. Control EngineeringPractice, 2005, 13(9): 1081-1092. [26] CHEN P, ZHENG J. PMLSM servo system design andimplement base on DSP28335 [J]. Modular MachineTool & Automatic Manufacturing Technique, 2013(1):80-83 (in Chinese). [27] SON Y I, KIM I H, CHOI D S, et al. Robust cascadecontrol of electric motor drives using dual reducedorderPI observer [J]. IEEE Transactions on IndustrialElectronics, 2015, 62(6): 3672-3682. [28] TAN K K, HUANG S N, DOU H F, et al. Adaptiverobust motion control for precise trajectory trackingapplications [J]. ISA Transactions, 2001, 40(1): 57-71.
Outlines

/