Synthesis and Applications of Porous Glass

Expand
  • (1. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Jushi Fiberglass Research Institute, Jushi Group Co., Ltd., Jiaxing 314500, Zhejiang, China; 3. Research Institute of Chemical Defense, Academy of Military Sciences PLA China, Beijing 102205, China)

Online published: 2019-12-07

Abstract

Porous materials have received significant attention for catalyst, electrochemical energy storage, sensing and compound capture. Large surface area and connected inner channel make porous materials outstanding in the applications of catalyst, batteries and biomedicine. Glass is a traditional material and has the advantages of high stability and other physical properties. By combining the advantages of porous materials and glass, porous glass has been researched widely and applied to many leading-edge fields, such as batteries and sensors. This review presents common methods for synthesizing porous glass, including phase separation process (PSP), direct leaching process (DLP) of acid, sintering and so on. Three main steps for fabrication of each process are concluded. The recent applications are support, capturer and matter transport, and they are highlighted in this review. Future directions for preparing these materials are also discussed.

Cite this article

ZHU Benbi (朱本必), ZHANG Zhijian (张志坚), ZHANG Wang (张旺), WU Yu (吴昱), ZHANG Jianzhong (章建忠), IMRAN Zada, ZHANG Di (张荻) . Synthesis and Applications of Porous Glass[J]. Journal of Shanghai Jiaotong University(Science), 2019 , 24(6) : 681 -698 . DOI: 10.1007/s12204-019-2131-1

References

[1] ENKE D, OTTO K, JANOWSKI F, et al. Twophase porous silica: Mesopores inside controlled pore glasses [J]. Journal of Materials Science, 2001, 36(9):2349-2357. [2] TOLDRA F, JANSEN N B, TSAO G T. Use of porous glass fiber as a support for biocatalyst immobilization[J]. Biotechnology Letters, 1986, 8(11):785-790. [3] NORDBERG M E. Properties of some vycor-brandglasses [J]. Journal of the American Ceramic Society,1944, 27(10): 299-305. [4] JANOWSKI F, ENKE D. Porous glasses[C]//Handbook of Porous Solids. Weinheim: Wiley-VCH Press, 2002: 1432-1542. [5] SIEBERS F, GREULICH N, KIEFER W. Manufacture,properties and application of open-pore sinteredglasses and open-pore sintered glass-ceramics[J]. Glastechnische Berichte, 1989, 62(2): 63-73. [6] UNGER K K. Porous silica: Its properties and useas a support in column liquid chromatography [J].Journal of Chromatography Library, 1979, 16: 336. [7] ENKE D, JANOWSKI F, SCHWIEGER W. Porousglasses in the 21st century: A short review [J]. Microporousand Mesoporous Materials, 2003, 60(1): 19-30. [8] ELMER T H. Leaching of E-glass [J]. Journal of theAmerican Ceramic Society, 1984, 67(12): 778-782. [9] SIMONOVA L G, PAUKSHTIS E A, DOVLITOVA L S, et al. Study of leaching of sodium aluminosilicatefiberglass materials [J]. Russian Journal of InorganicChemistry, 2015, 60(9): 1052-1058. [10] REINHARDT B, HERWIG J, RANNABAUER S, etal. Hierarchically structured glass monoliths based onpolyurethane foams as template [J]. Journal of theEuropean Ceramic Society, 2014, 34(5): 1465-1470. [11] VELEV O D, JEDE T A, LOBO R F, et al. Poroussilica via colloidal crystallization [J]. Nature, 1997,389(6650): 447-448. [12] INAYAT A, REINHARDT B, UHLIG H, et al. Silicamonoliths with hierarchical porosity obtained fromporous glasses [J]. Chemical Society Reviews, 2013,42(9): 3753-3764. [13] KAMEGAWA T, ISHIGURO Y, SETO H, et al.Enhanced photocatalytic properties of TiO2-loadedporous silica with hierarchical macroporous andmesoporous architectures in water purification [J].Journal of Materials Chemistry A, 2015, 3(5): 2323-2330. [14] KUANG D, BREZESINSKI T, SMARSLY B. Hierarchicalporous silica materials with a trimodal poresystem using surfactant templates [J]. Journal of theAmerican Chemical Society, 2004, 126(34): 10534-10535. [15] XIONG J, ZHU W S, DING W J, et al. Controllablesynthesis of functionalized ordered mesoporoussilica by metal-based ionic liquids, and their effectiveadsorption of dibenzothiophene [J]. RSC Advances,2014, 4(76): 40588-40594. [16] INAYAT A, REINHARDT B, HERWIG J, et al. Recentadvances in the synthesis of hierarchically poroussilica materials on the basis of porous glasses [J]. NewJournal of Chemistry, 2016, 40(5): 4095-4114. [17] IZUMI K, UTIYAMA M, MARUO Y Y. ColorimetricNOx sensor based on a porous glass-based NO2 sensingchip and a permanganate oxidizer [J]. Sensors andActuators B: Chemical, 2015, 216: 128-133. [18] FANG X E, WEI S S, KONG J L. Paper-based microfluidicswith high resolution, cut on a glass fibermembrane for bioassays [J]. Lab on a Chip, 2014,14(5): 911-915. [19] MAURATH J, DITTMANN J, SCHULTZ N, et al.Fabrication of highly porous glass filters using capillarysuspension processing [J]. Separation and PurificationTechnology, 2015, 149: 470-478. [20] GAO H C, GUO B K, SONG J, et al. A compositegel-polymer/glass-fiber electrolyte for sodium-ionbatteries [J]. Advanced Energy Materials, 2015, 5(9):1402235. [21] RAHAMAN M N, DAY D E, SONNY BAL B, et al.Bioactive glass in tissue engineering [J]. Acta Biomaterialia,2011, 7(6): 2355-2373. [22] FU Q, SAIZ E, TOMSIA A P. Bioinspired strong andhighly porous glass scaffolds [J]. Advanced FunctionalMaterials, 2011, 21(6): 1058-1063. [23] GULYAEVA Y K, KAICHEV V V, ZAIKOVSKIIV I, et al. Selective hydrogenation of acetylene overnovel Pd/fiberglass catalysts [J]. Catalysis Today,2015, 245: 139-146. [24] PAUKSHTIS E A, SIMONOVA L G, ZAGORUIKOA N, et al. Oxidative destruction of chlorinated hydrocarbonson Pt-containing fiber-glass catalysts [J].Chemosphere, 2010, 79(2): 199-204. [25] KIWI-MINSKER L, YURANOV I, SLAVINSKAIAE, et al. Pt and Pd supported on glass fibers as effectivecombustion catalysts [J]. Catalysis Today, 2000,59(1/2): 61-68. [26] HOFFMANN M, KREFT S, GEORGI G, et al. Improvedcatalytic methane combustion of Pd/CeO2catalysts via porous glass integration [J]. AppliedCatalysis B: Environmental, 2015, 179: 313-320. [27] NICHOLAS D M, SHAH Y T. Carbon monoxide oxidationover a platinum-porous fiber glass supportedcatalyst [J]. Industrial & Engineering ChemistryProduct Research and Development, 1976, 15(1): 35-40. [28] ENKE D, JANOWSKI F, GILLE W, et al. Structureand texture analysis of colloidal silica in porousglasses [J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects, 2001, 187/188: 131-139. [29] SUN Y W, WANG Y J, YANG L, et al. Heavy metalion sorption properties of porous glass beads with acore-shell structure [J]. Solvent Extraction and IonExchange, 2008, 26(5): 672-685. [30] IMAKITA K, KAMADA T, KAMATANI J I, et al.Room temperature direct imprinting of porous glassprepared from phase-separated glass [J]. Nanotechnology,2015, 26(25): 255304. [31] NOJI T, KAWAKAMI K, SHEN J R, et al. Oxygenevolvingporous glass plates containing the photosyntheticphotosystem II pigment-protein complex [J].Langmuir, 2016, 32(31): 7796-7805. [32] HWANG C, KIM J, RYU B K, et al. Preparationof porous glass films using phase separation phenomenonand growth behavior of phase-separatedstructure [J]. Journal of Materials Science, 2013,48(23): 8068-8076. [33] BAL’ZHINIMAEV B S, SUKNEV A P, GULYAEVAY K, et al. Silicate fiberglass catalysts: From scienceto technology [J]. Catalysis in Industry, 2015, 7(4):267-274. [34] REINHARDT B, ENKE D, SYROWATKA F. Preparationof porous, hierarchically organized glass monolithsvia combination of sintering and phase separation[J]. Journal of the American Ceramic Society,2012, 95(2): 461-465. [35] POOLOGASUNDARAMPILLAI G, LEE P D, LAMC, et al. Compressive strength of bioactive sol-gelglass foam scaffolds [J]. International Journal of AppliedGlass Science, 2016, 7(2): 229-237. [36] MARANGONIM, ARNOUT L, MACHIELS L, et al.Porous, sintered glass-ceramics from inorganic polymersbased on fayalite slag [J]. Journal of the AmericanCeramic Society, 2016, 99(6): 1985-1991. [37] TSYGANOVA T A, ANTROPOVA T V, RAKHIMOVA O V, et al. Specific features of the formationof a porous structure in products of leaching of twophasesodium borosilicate glasses in acid-salt solutions[J]. Glass Physics and Chemistry, 2007, 33(2):122-129. [38] PORTER H H, EMERY N M. Method of treatingborosilicate glasses: US2215039 [P]. 1940-07-17[2018-05-12]. [39] CHAPMAN I D, ELMER T H. Porous high silicaglass: US3485687 [P]. 1969-12-23 [2018-05-12]. [40] EATON D L. Porous glass support material:US3904422 [P]. 1975-09-09 [2018-05-12]. [41] CHE T M, CARNEY R V, DOTSON D L. Porousglass monoliths: US4810674 [P]. 1989-03-07 [2018-05-12]. [42] ELMER T H, NORDBERG M E, CARRIER G B, etal. Phase separation in borosilicate glasses as seenby electron microscopy and scanning electron microscopy[J]. Journal of the American Ceramic Society,1970, 53(4): 171-175. [43] YANG P D, DENG T, ZHAO D Y, et al. Hierarchicallyordered oxides [J]. Science, 1998, 282(5397):2244-2246. [44] YUN H S, KIM S E, HYEON Y T. Design andpreparation of bioactive glasses with hierarchical porenetworks [J]. Chemical Communications, 2007(21):2139-2141. [45] HALLER W. Rearrangement kinetics of the liquidliquidimmiscible microphases in alkali borosilicatemelts [J]. The Journal of Chemical Physics, 1965,42(2): 686-693. [46] CAHN JW. Phase separation by spinodal decompositionin isotropic systems [J]. The Journal of ChemicalPhysics, 1965, 42(1): 93-99. [47] CAHN JW, HILLIARD J E. Free energy of a nonuniformsystem. III. Nucleation in a two-componentincompressible fluid [J]. The Journal of ChemicalPhysics, 1959, 31(3): 688-699. [48] YAZAWA T, KURAOKA K, DUW-F. Effect of coolingrate on pore distribution in quenched sodiumborosilicate glasses [J]. The Journal of PhysicalChemistry B, 1999, 103(45): 9841-9845. [49] KUKIZAKI M, NAKASHIMA T. Acid leachingprocess in the preparation of porous glass membranesfrom phase-separated glass in the Na2O-CaOMgO-Al2O3-B2O3-SiO2 system [J]. Membrane, 2004,29(5): 301-308. [50] PORTER H H, EMERY N M. Treated borosilicateglass: US2106744 [P]. 1938-02-01 [2018-05-12]. [51] IZUMI K, UTIYAMA M, MARUO Y Y. A porousglass-based ozone sensing chip impregnated withpotassium iodide and α-cyclodextrin [J]. Sensors andActuators B: Chemical, 2017, 241: 116-122. [52] SHEN C, WANG Y J, XU J H, et al. Synthesis of TS-1 on porous glass beads for catalytic oxidative desulfurization[J]. Chemical Engineering Journal, 2015,259: 552-561. [53] SHEN C, WANG Y J, XU J H, et al. Oxidativedesulfurization of DBT with H2O2 catalyzed byTiO2/porous glass [J]. Green Chemistry, 2016, 18(3):771-781. [54] JONES J R. New trends in bioactive scaffolds: Theimportance of nanostructure [J]. Journal of the EuropeanCeramic Society, 2009, 29(7): 1275-1281. [55] REICHELT E, HEDDRICH M P, JAHN M, et al.Fiber based structured materials for catalytic applications[J]. Applied Catalysis A: General, 2014, 476:78-90. [56] SRIVASTAVA S K, GUIX M, SCHMIDT O G.Wastewater mediated activation of micromotors forefficient water cleaning [J]. Nano letters, 2016, 16(1):817-821. [57] SUN M H, HUANG S Z, CHEN L H, et al. Applicationsof hierarchically structured porous materialsfrom energy storage and conversion, catalysis,photocatalysis, adsorption, separation, and sensingto biomedicine [J]. Chemical Society Reviews, 2016,45(12): 3479-3563. [58] JACOB K, STOLLE A, ONDRUSCHKA B, et al.Cu on porous glass: An easily recyclable catalyst forthe microwave-assisted azide-alkyne cycloaddition inwater [J]. Applied Catalysis A: General, 2013, 451:94-100. [59] LI J T, MAU A W H, STRAUSS C R. The use ofpalladium on porous glass for catalytic coupling reactions[J]. Chemical Communications, 1997 (14): 1275-1276. [60] SCHM¨OGER C, SZUPPA T, TIED A, et al. Pdon porous glass: A versatile and easily recyclablecatalyst for Suzuki and Heck reactions [J]. Chem-SusChem, 2008, 1(4): 339-347. [61] TAKAHASHI T, YAMASHITA K, KAI T, et al. Hydrogenationof benzene, mono-, di-, and trimethylbenzenesover nickel catalysts supported on porousglass [J]. The Canadian Journal of Chemical Engineering,1986, 64(6): 1008-1013. [62] YAMASHITA H, HONDA M, HARADA M, etal. Preparation of titanium oxide photocatalystsanchored on porous silica glass by a metal ionimplantationmethod and their photocatalytic reactivitiesfor the degradation of 2-propanol diluted inwater [J]. The Journal of Physical Chemistry B, 1998,102(52): 10707-10711. [63] NAKAGAKI S, RAMOS A R, BENEDITO F L, et al.Immobilization of iron porphyrins into porous vycorglass: Characterization and study of catalytic activity[J]. Journal of Molecular Catalysis A: Chemical, 2002,185(1/2): 203-210. [64] SHEN C, WANG Y J, XU J H, et al. Size control andcatalytic activity of highly dispersed Pd nanoparticlessupported on porous glass beads [J]. Langmuir, 2012,28(19): 7519-7527. [65] HAYASHIM, OCHIAI T, TAGO S, et al. Influence ofdissolved ions on the water purification performanceof TiO2-impregnated porous silica tubes [J]. Catalysts,2017, 7(5): 158. [66] OCHIAI T, TAGO S, HAYASHI M, et al. TiO2-Impregnated porous silica tube and its applicationfor compact air- and water-purification units [J]. Catalysts,2015, 5(3): 1498-1506. [67] PELTOLA S M, MELCHELS F P W, GRIJPMA DW, et al. A review of rapid prototyping techniques fortissue engineering purposes [J]. Annals of Medicine,2008, 40(4): 268-280. [68] HUTMACHER D W. Scaffolds in tissue engineeringbone and cartilage [J]. Biomaterials, 2000, 21(24):2529-2543. [69] BAINO F, FIORILLI S, VITALE-BROVARONEC. Bioactive glass-based materials with hierarchicalporosity for medical applications: Review of recentadvances [J]. Acta Biomaterialia, 2016, 42: 18-32. [70] ZHANG X D, ZENG D L, LI N, et al. Functionalizedmesoporous bioactive glass scaffolds for enhancedbone tissue regeneration [J]. Scientific Reports, 2016,6: 19361. [71] ELSAYED H, ROMERO A R, FERRONI L, et al.Bioactive glass-ceramic scaffolds from novel ‘inorganicgel casting’ and sinter-crystallization [J]. Materials,2017, 10(2): 171. [72] JONES J R, EHRENFRIED L M, HENCH L L. Optimisingbioactive glass scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(7): 964-973. [73] WU C T, XIA L G, HAN P P, et al. Europiumcontainingmesoporous bioactive glass scaffolds forstimulating in vitro and in vivo osteogenesis [J]. ACSApplied Materials & Interfaces, 2016, 8(18): 11342-11354. [74] HENDRIKX S, KASCHOLKE C, FLATH T, et al.Indirect rapid prototyping of sol-gel hybrid glassscaffolds for bone regeneration: Effects of organiccrosslinker valence, content and molecular weight onmechanical properties [J]. Acta Biomaterialia, 2016,35: 318-329. [75] TSAI S W, CHANG Y H, YU J L, et al. Preparationof nanofibrous structure of mesoporous bioactive glassmicrobeads for biomedical applications [J]. Materials,2016, 9(6): 487. [76] WU C T, CHANG J. Multifunctional mesoporousbioactive glasses for effective delivery of therapeuticions and drug/growth factors [J]. Journal of ControlledRelease, 2014, 193: 282-295. [77] YANG S B, ZHAN L, XU X Y, et al. Graphenebasedporous silica sheets impregnated withpolyethyleneimine for superior CO2 capture [J].Advanced Materials, 2013, 25(15): 2130-2134. [78] NUGENT P, BELMABKHOUT Y, BURD S D, et al.Porous materials with optimal adsorption thermodynamicsand kinetics for CO2 separation [J]. Nature,2013, 495(7439): 80-84. [79] GAO X, ZOU X Q, MA H P, et al. Highly selectiveand permeable porous organic framework membranefor CO2 capture [J]. Advanced Materials, 2014,26(22): 3644-3648. [80] CHEN C, YANG S T, AHN W S, et al. Amineimpregnatedsilica monolith with a hierarchical porestructure: Enhancement of CO2 capture capacity [J].Chemical Communications, 2009(24): 3627-3629. [81] ALKHABBAZMA, BOLLINI P, FOO G S, et al. Importantroles of enthalpic and entropic contributionsto CO2 capture from simulated flue gas and ambientair using mesoporous silica grafted amines [J]. Journalof the American Chemical Society, 2014, 136(38):13170-13173. [82] SPENIK J L, SHADLE L J, BREAULT R W, et al.Cyclic tests in batch mode of CO2 adsorption andregeneration with sorbent consisting of immobilizedamine on a mesoporous silica [J]. Industrial & EngineeringChemistry Research, 2015, 54(20): 5388-5397. [83] ZELEˇN ′AK V, BADANIˇCOV′A M, HALAMOV′A D,et al. Amine-modified ordered mesoporous silica: Effectof pore size on carbon dioxide capture [J]. ChemicalEngineering Journal, 2008, 144(2): 336-342. [84] MINJU N, ABHILASH P, NAIR B N, et al. Amine impregnated porous silica gel sorbents synthesizedfrom water-glass precursors for CO2 capturing [J].Chemical Engineering Journal, 2015, 269: 335-342. [85] ZELENAK V, HALAMOVA D, GABEROVA L, et al.Amine-modified SBA-12 mesoporous silica for carbondioxide capture: Effect of amine basicity on sorptionproperties [J]. Microporous and Mesoporous Materials,2008, 116(1/2/3): 358-364. [86] CHANG F Y, CHAO K J, CHENG H H, et al. Adsorptionof CO2 onto amine-grafted mesoporous silicas[J]. Separation and Purification Technology, 2009,70(1): 87-95. [87] MELLO M R, PHANON D, SILVEIRA G Q, et al.Amine-modified MCM-41 mesoporous silica for carbondioxide capture [J]. Microporous and MesoporousMaterials, 2011, 143(1): 174-179. [88] CHAIKITTISILP W, KHUNSUPAT R, CHEN T T,et al. Poly(allylamine)-mesoporous silica compositematerials for CO2 capture from simulated flue gas orambient air [J]. Industrial & Engineering ChemistryResearch, 2011, 50(24): 14203-14210. [89] BRUNELLI N A, DIDAS S A, VENKATASUBBAIAHK, et al. Tuning cooperativity by controlling thelinker length of silica-supported amines in catalysisand CO2 capture [J]. Journal of the American ChemicalSociety, 2012, 134(34): 13950-13953. [90] FAUTH D J, GRAY M L, PENNLINE H W, et al.Investigation of porous silica supported mixed-aminesorbents for post-combustion CO2 capture [J]. Energy& Fuels, 2012, 26(4): 2483-2496. [91] JI C C, HUANG X, LI L, et al.Pentaethylenehexamine-loaded hierarchically poroussilica for CO2 adsorption [J]. Materials, 2016, 9(10):835. [92] SHEN C, WANG Y J, XU J H, et al. Porous glassbeads as a new adsorbent to remove sulfur-containingcompounds [J]. Green Chemistry, 2012, 14(4): 1009-1015. [93] SHEN C, WANG Y J, XU J H, et al. Chitosan supportedon porous glass beads as a new green adsorbentfor heavy metal recovery [J]. Chemical EngineeringJournal, 2013, 229: 217-224. [94] LI L Y, CHEN L, SHI H R, et al. Evaluation of mesoporousbioactive glass (MBG) as adsorbent for removalof methylene blue (MB) from aqueous solution[J]. Journal of Environmental Chemical Engineering,2016, 4(2): 1451-1459. [95] ZADAKA D, MISHAEL Y G, POLUBESOVA T, etal. Modified silicates and porous glass as adsorbentsfor removal of organic pollutants from water and comparisonwith activated carbons [J]. Applied Clay Science,2007, 36(1): 174-181. [96] PASETA L, SIM′ON-GAUD′O E, GRACIA-GORR′IAF, et al. Encapsulation of essential oils in porous silicaand MOFs for trichloroisocyanuric acid tablets usedfor water treatment in swimming pools [J]. ChemicalEngineering Journal, 2016, 292: 28-34. [97] DOU J, ZENG H C. Integrated networks ofmesoporous silica nanowires and their bifunctionalcatalysis-sorption application for oxidative desulfurization[J]. ACS Catalysis, 2014, 4(2): 566-576. [98] ZHANG F, SONG J, CHEN M, et al. Enhanced perovskitemorphology and crystallinity for high performanceperovskite solar cells using a porous hole transportlayer from polystyrene nanospheres [J]. PhysicalChemistry Chemical Physics, 2016, 18(48): 32903-32909. [99] REUILLARD B, LY K H, HILDEBRANDT P, et al.High performance reduction of H2O2 with an electrontransport decaheme cytochrome on a porousITO electrode [J]. Journal of the American ChemicalSociety, 2017, 139(9): 3324-3327. [100] M¨ULLER R, ANDERS N, TITUS J, et al. Ultrathinporous glass membranes: An innovative materialfor the immobilization of active species for opticalchemosensors [J]. Talanta, 2013, 107: 255-262. [101] DE EULATE E A, STRUTWOLF J, LIU Y, etal. An electrochemical sensing platform based onliquid-liquid microinterface arrays formed in laserablatedglass membranes [J]. Analytical Chemistry,2016, 88(5): 2596-2604. [102] ZHANG X D, XU X L, HE W, et al.LiFePO4/NaFe3V9O19/porous glass nanocompositecathodes for Li+/Na+ mixed-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3:22247-22257. [103] GASPERA E D, BUSO D, GUGLIELMI M, et al.Comparison study of conductometric, optical andSAW gas sensors based on porous sol-gel silica filmsdoped with NiO and Au nanocrystals [J]. Sensors andActuators B: Chemical, 2010, 143(2): 567-573. [104] DE STEFANO L, MALECKI K, DELLA CORTE FG, et al. A microsystem based on porous silicon-glassanodic bonding for gas and liquid optical sensing [J].Sensors, 2006, 6(6): 680-687. [105] ABDELGHANI A, CHOVELON J M, JAFFREZICRENAULT N, et al. Optical fibre sensor coated withporous silica layers for gas and chemical vapour detection[J]. Sensors and Actuators B: Chemical, 1997,44(1/2/3): 495-498. [106] RAYSS J, SUDOLSKI G. Ion adsorption in theporous sol-gel silica layer in the fibre optic pH sensor[J]. Sensors and Actuators B: Chemical, 2002, 87(3):397-405. [107] SARMA T V S, TAO S Q. An active core fiber opticsensor for detecting trace H2S at high temperatureusing a cadmium oxide doped porous silica opticalfiber as a transducer [J]. Sensors and Actuators B:Chemical, 2007, 127(2): 471-479. [108] ESTELLA J, DE VICENTE P, ECHEVERR′IA J C,et al. A fibre-optic humidity sensor based on a poroussilica xerogel film as the sensing element [J]. Sensorsand Actuators B: Chemical, 2010, 149(1): 122-128. [109] CHEN Y Z, LI X J, ZHOU H S, et al. Refractive index detection range adjustable liquid-core fiber optic sensor based on surface plasmon resonance and a nano-porous silica coating [J]. Journal of Physics D:Applied Physics, 2016, 49(35): 355102. [110] ECHEVERR′IA J C, FAUSTINI M, GARRIDO J J.Effects of the porous texture and surface chemistry ofsilica xerogels on the sensitivity of fiber-optic sensorstoward VOCs [J]. Sensors and Actuators B: Chemical,2016, 222: 1166-1174. [111] CRAMP J H W, MURRAY R T, REID R F, et al.Fibre optic sensor with bonded dye: US4560248 [P].1985-12-24 [2018-05-12]. [112] SIGEL JR G, SHAHRIARIM, ZHOU Q. Method formaking porous glass optical fiber sensor: US5250095[P]. 1993-10-05 [2018-05-12]. [113] BURNS A A, HERZ E, ZEDAYKO T C, et al. Photoluminescentsilica-based sensors and methods of use:US8084001 [P]. 2011-12-27 [2018-05-12]. [114] XU P C, LI X X, YU H T, et al. Advancednanoporous materials for micro-gravimetric sensingto trace-level bio/chemical molecules [J]. Sensors,2014, 14(10): 19023-19056. [115] WAGNER T, KROTZKY S, WEI S S A, et al. A high temperature capacitive humidity sensor basedon mesoporous silica [J]. Sensors, 2011, 11(3): 3135-3144. [116] ADDANKI S, NEDUMARAN D. Fabrication ofozone sensors on porous glass substrates using goldand silver thin films nanoislands [J]. Optik, 2017, 150:11-21. [117] IZUMI K, UTIYAMA M, MARUO Y Y. A porousglass-based KI/α-CD chip for ozone sensing: Improvementin the humidity response of the chipthrough optimizing reagent concentrations in the impregnationprocess [J]. Sensors and Actuators B:Chemical, 2018, 268: 1-6. [118] ZHU X B, ZHAO T S, WEI Z H, et al. A novel solidstateLi-O2 battery with an integrated electrolyte andcathode structure [J]. Energy & Environmental Science,2015, 8(9): 2782-2790. [119] LI G X, SUN J H, HOUWP, et al. Three-dimensionalporous carbon composites containing high sulfurnanoparticle content for high-performance lithiumsulfurbatteries [J]. Nature Communications, 2016, 7:10601. [120] YUAN Z Z, DUAN Y Q, ZHANG H Z, et al. Advancedporous membranes with ultra-high selectivityand stability for vanadium flow batteries [J]. Energy& Environmental Science, 2016, 9(2): 441-447. [121] WANG G L, BOHATY A K, ZHAROV I, et al. Photongated transport at the glass nanopore electrode[J]. Journal of the American Chemical Society, 2006,128(41): 13553-13558. [122] SORGE M, BEAN T, WOODLAND T, et al. Investigatingthe use of porous, hollow glass microspheres inpositive lead acid battery plates [J]. Journal of PowerSources, 2014, 266: 496-511. [123] LU J, FAN Y S, HOWARD M D, et al. Singlemoleculeelectrochemistry on a porous silica-coatedelectrode [J]. Journal of the American Chemical Society,2017, 139(8): 2964-2971. [124] SCHADECK U, KYRGYZBAEV K, GERDES T,et al. Porous and non-porous micrometer-sized glassplatelets as separators for lithium-ion batteries [J].Journal of Membrane Science, 2018, 550: 518-525. [125] KIM J, LEE S, SHIN D. Preparation of a hybrid solidglass electrolyte using a nano-porous sodium borosilicateglass membrane for lithium batteries [J]. Journalof Ceramic Processing Research, 2007, 8(3): 208-212. [126] WU L P, ZHANGW, ZHANG D. Engineering gyroidstructuredfunctional materials via templates discoveredin nature and in the lab [J]. Small, 2015, 11(38):5004-5022.
Outlines

/