Energy Separation and Explicit Dynamic Analysis of Low Temperature Impact Toughness of Transmission Tower Material Q420B

Expand
  • (1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; 2. Sichuan Tongyuan Electric Power Technology Co., Ltd., Chengdu 610072, China)

Online published: 2019-05-29

Abstract

To determine the physical significance of the impact toughness parameters and accurately characterize the low temperature impact toughness of transmission tower material Q420B, the finite element model of Charpy impact test is established on the basis of experiment. The simulation and test results are verified, and the specimen fracture is analyzed by scanning electron microscope. The formation and growth mechanism of the crack are dynamically analyzed. On this basis, energy separation method is used to investigate the effect of low temperature on impact toughness. The results show that the simulation and test results are in good agreement, and the ductile-brittle transition temperature of Q420B is about ?50 ?C. The breaking process of the specimen is divided into the crack formation and propagation. When temperature drops from 20 to ?60 ?C, the crack propagation energy decreases from 51.0 to 11.9 J, the crack formation energy reduces from 39.9 to 15.8 J, and the fracture time of the material drops from 1.8 to 0.6ms.

Cite this article

YU Xingxue (余兴学), ZHANG Yinghua (张映华), ZHANG Xiaomin (张晓敏), JIANG Yu* (蒋渝) . Energy Separation and Explicit Dynamic Analysis of Low Temperature Impact Toughness of Transmission Tower Material Q420B[J]. Journal of Shanghai Jiaotong University(Science), 2019 , 24(3) : 381 -387 . DOI: 10.1007/s12204-018-1963-4

References

[1] CHEN S, DONG D, HUANG X T, et al. Short-termprediction for transmission lines icing based on BPneural network [C]// 2012 Asia-Pacific Power and EnergyEngineering Conference. Shanghai, China: IEEE,2012: 1-5. [2] MA T N, NIU D X, FU M. Icing forecasting for powertransmission lines based on a wavelet support vectormachine optimized by a quantum fireworks algorithm[J]. Applied Sciences, 2016, 6(2): 1-23. [3] HU X G, CUI Z J, LI Q H, et al. Analysis of collapseof a 330 kilovolt transmission line tower [J]. IndustrialConstruction, 2016, 46(8): 50-55 (in Chinese). [4] RAO N P, KNIGHT G M S, MOHAN S J, et al. Studieson failure of transmission line towers in testing [J].Engineering Structures, 2012, 35: 55-70. [5] ALAZHARI M S. Analysis and testing the over headtransmission steel towers [J]. IOSR Journal of Mechanicaland Civil Engineering, 2014, 11(2): 17-21. [6] LAM H F, YIN T. Dynamic reduction-based structuraldamage detection of transmission towers: Practicalissues and experimental verification [J]. EngineeringStructures, 2011, 33(5): 1459-1478. [7] FARZANEHM, SAVADJIEV K. Statistical analysis offield data for precipitation icing accretion on overheadpower lines [J]. IEEE Transactions on Power Delivery,2005, 20(2): 1080-1087. [8] ALBERMANI F, KITIPORNCHAI S, CHAN R W K.Failure analysis of transmission towers [J]. EngineeringFailure Analysis, 2009, 16(6):1922-1928. [9] ROYLANCE D. Mechanics of materials [M]. NewYork: John Wiley & Sons, 1996. [10] TOMOTA Y, XIA Y, INOUE K. Mechanism of lowtemperature brittle fracture in high nitrogen bearingaustenitic steels [J]. Acta Materialia, 1998, 46(5):1577-1587. [11] PINEAU A. Modeling ductile to brittle fracture transitionin steels-micromechanical and physical challenges[J]. International Journal of Fracture, 2008, 150(1/2):129-156. [12] LIU S Y, LIU D Y, LIU S C. Transgranular fracturein low temperature brittle fracture of high nitrogenaustenitic steel [J]. Journal of Materials Science, 2007,42(17): 7514-7519. [13] T′OTH L, ROSSMANITH H P, SIEWERT T A. Historicalbackground and development of the Charpy test[J]. European Structural Integrity Society, 2002, 30: 3-19. [14] RADON J C. Application of instrumented impact testin polymer testing [J]. Journal of Applied Polymer Science,1978, 22(6): 1569-1581. [15] ROSSOLL A, BERDIN C, PRIOUL C. Determinationof the fracture toughness of a low alloy steel bythe instrumented Charpy impact test [J]. InternationalJournal of Fracture, 2002, 115(3): 205-226. [16] ISO. Metallic materials-tensile testing at low temperature:ISO 15579-2000 [S]. Geneva, Switzerland: ISO,2000. [17] ISO. Metallic materials-Charpy pendulum impact test:ISO 148-1-2009 [S]. Geneva, Switzerland: ISO, 2009. [18] HALLQUIST J O. LS-DYNA3D Theoretical Manual[M]. Livermore, CA: LSTC, 1993. [19] PADHI D, LEWANDOWSKI J J. Effects of test temperatureand grain size on the Charpy impact toughnessand dynamic toughness (KID) of polycrystallineniobium [J]. Metallurgical and Materials TransactionsA, 2003, 34(4): 967-978. [20] RZEPA S, BUCKI T, KONOP′IK P, et al. Influenceof specimen dimensions on ductile-to-brittle transitiontemperature in Charpy impact test [C]// Proceedingsof the 4th International Conference Recent Trends inStructural Materials. Pilsen, Czech Republic: IOP,2017: 012063. [21] ZHANG G M, ZHOU Z J, WANG M, et al.Tensile and Charpy impact properties of an ODSferritic/martensiticsteel 9Cr-1.8W-0.5Ti-0.35Y2O3 [J].Fusion Engineering and Design, 2014, 89(4): 280-283. [22] PILLOT S, PACQUEAU P. An attempt to define aCharpy V-notched mastercurve to fit transition of ferriticsteels [J]. Engineering Fracture Mechanics, 2015,135: 259-273. [23] WAN Q M, WANG R S, SHU G G, et al. Analysismethod of Charpy V-notch impact data before andafter electron beam welding reconstitution [J]. NuclearEngineering and Design, 2011, 241(2): 459-463.
Outlines

/