[1] GOYAL P, SIDHARTHA. Present scenario of air quality in Delhi: A case study of CNG implementation [J].Atmospheric Environment, 2003, 37(38): 5423-5431.
[2] D′IAZ E, FERN′ANDEZ J, ORD′O ?NEZ S, et al. Carbon and ecological footprints as tools for evaluating the environmental impact of coal mine ventilation air [J].Ecological Indicators, 2012, 18: 126-130.
[3] FINO D, RUSSO N, SARACCO G, et al. Supported Pd-perovskite catalyst for CNG engines’ exhaust gas treatment [J]. Progress in Solid State Chemistry, 2007,35(2): 501-511.
[4] YOSHIDA H, NAKAJIMA T, YAZAWA Y, et al. Support effect on methane combustion over palladium catalysts[J]. Applied Catalysis B: Environmental, 2007,71(1): 70-79.
[5] COLUSSI S, TROVARELLI A, CRISTIANI C, et al.The influence of ceria and other rare earth promoters on palladium-based methane combustion catalysts [J].Catalysis Today, 2012, 180(1): 124-130.
[6] YUE B H, ZHOU R X, WANG Y J, et al. Study of the methane combustion and TPR/TPO properties of Pd/Ce–Zr–M/Al2O3, catalysts with M=Mg, Ca, Sr,Ba [J]. Journal of Molecular Catalysis A: Chemical,2005, 238(1): 241-249.
[7] SHEN J, HAYES R E, WU X X, et al. 100?Temperature reduction of wet methane combustion: Highly active Pd–Ni/Al2O3 catalyst versus Pd/NiAl2O4 [J].ACS Catalysis, 2015, 5: 2916-2920.
[8] LIOTTA L F, CARLO G D, PANTALEO G, et al. Honeycomb supported Co3O4/CeO2 catalyst for CO/CH4 emissions abatement: Effect of low Pd–Pt content on the catalytic activity [J]. Catalysis Communications,2007, 8(3): 299-304.
[9] YUE B H, ZHOU R X, WANG Y J, et al. Effect of rare earths (La, Pr, Nd, Sm and Y) on the methane combustion over Pd/Ce–Zr/Al2O3 catalysts [J]. Applied Catalysis A: General, 2005, 295(1): 31-39.
[10] CHENAKIN S P, MELAET G, SZUKIEWICZ R,et al. XPS study of the surface chemical state of a Pd/(SiO2+TiO2) catalyst after methane oxidation and SO2, treatment [J]. Journal of Catalysis, 2014, 312(2):1-11.
[11] GUO X N, ZHI G J, YAN X Y, et al. Methane combustion over Pd/ZrO2/SiC, Pd/CeO2/SiC, and Pd/Zr0.5Ce0.5O2/SiC catalysts [J]. Catalysis Communications,2011, 12(10): 870-874.
[12] STROBEL R, GRUNWALDT J D, CAMENZIND A,et al. Flame-made alumina supported Pd–Pt nanoparticles:Structural properties and catalytic behavior in methane combustion [J]. Catalysis Letters, 2005,104(1/2): 9-16.
[13] SPECCHIA S, CONTI F, SPECCHIA V. Kinetic studies on Pd/CexZr1?xO2 catalyst for methane combustion[J]. Industrial & Engineering Chemistry Research,2010, 49(21): 11101-11111.
[14] OSHIMA K, SHINAGAWA T, NOGAMI Y, et al. Low temperature catalytic reverse water gas shift reaction assisted by an electric field [J]. Catalysis Today, 2014,232: 27-32.
[15] SUGIURA K, OGO S, IWASAKI K, et al. Lowtemperature catalytic oxidative coupling of methane in an electric field over a Ce–W–O catalyst system [J].Scientific Reports, 2016, 9: 25154.
[16] SEKINE Y, HARAGUCHI M, TOMIOKA M, et al.Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field. [J].Journal of Physical Chemistry A, 2010, 114(11): 3824-3833.
[17] SEKINE Y, TOMIOKA M, MATSUKATA M, et al.Catalytic degradation of ethanol in an electric field [J].Catalysis Today, 2009, 146(1): 183-187.
[18] YABE T, KAMITE Y, SUGIURA K, et al. Lowtemperature oxidative coupling of methane in an electric field using carbon dioxide over Ca-doped LaAlO3 perovskite oxide catalysts [J]. Journal of CO2 Utilization,2017, 20: 156-162.
[19] YABE T, MITARAI K, OSHIMA K, et al. Lowtemperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts[J]. Fuel Processing Technology, 2017, 158: 96-103.
[20] OSHIMA K, TANAKA K, YABE T, et al. Oxidative coupling of methane using carbon dioxide in an electric field over La–ZrO2 catalyst at low external temperature[J]. Fuel, 2013, 107(9): 879-881.
[21] KIM T, JO S, SONG Y H, et al. Synergetic mechanism of methanol-steam reforming reaction in a catalytic reactor with electric discharges [J]. Applied Energy, 2014,113(1): 1692-1699.
[22] OSHIMA K, SHINAGAWA T, HARAGUCHI M, et al. Low temperature hydrogen production by catalytic steam reforming of methane in an electric field [J]. International Journal of Hydrogen Energy, 2013, 38(7):3003-3011.
[23] SEKINE Y, HARAGUCHI M, MATSUKATA M, et al. Low temperature steam reforming of methane over metal catalyst supported on CexZr1?xO2 in an electric field [J]. Catalysis Today, 2011, 171(1): 116-125.
[24] OSHIMA K, SHINAGAWA T, SEKINE Y. Methane conversion assisted by plasma or electric field [J]. Journal of the Japan Petroleum Institute, 2013, 56(1): 11-21.
[25] GIRAUDON J M, ELHACHIMI A, LECLERCQ G. Catalytic oxidation of chlorobenzene over Pd/perovskites [J]. Applied Catalysis B: Environmental,2008, 84(1): 251-261.
[26] NARAYANAPPA M, DASIREDDY V D B C,FRIEDRICH H B. Catalytic oxidation of n-octane over cobalt substituted ceria (Ce0.90Co0.10O2?δ) catalysts[J]. Applied Catalysis A: General, 2012, 447/448: 135-143.
[27] ZAFEIRATOS S, DINTZER T, TESCHNER D, et al.Methanol oxidation over model cobalt catalysts: Influence of the cobalt oxidation state on the reactivity [J].Journal of Catalysis, 2010, 269(2): 309-317.
[28] TANG Y, MA L, DOU J, et al. Transition of surface phase of cobalt oxide during CO oxidation [J]. Physical Chemistry Chemical Physics, 2018, 20: 6440-6449.
[29] TRIVEDI S, PRASAD R. Reactive calcination route for synthesis of active Mn–Co3O4, spinel catalysts for abatement of CO–CH4, emissions from CNG vehicles[J]. Journal of Environmental Chemical Engineering,2016, 4: 1017-1028.
[30] PU′ERTOLAS B, SMITH A, V′AZQUEZ I, et al. The different catalytic behaviour in the propane total oxidation of cobalt and manganese oxides prepared by a wet combustion procedure [J]. Chemical Engineering Journal, 2013, 229(4): 547-558.
[31] TANG X L, GAO F Y, XIANG Y, et al. Effect of potassium-precursor promoters on catalytic oxidation activity of Mn-CoOx catalysts for NO removal [J].Industrial & Engineering Chemistry Research, 2015,54(37): 9116-9123.
[32] LIOTTA L F, CARLO G D, PANTALEO G, et al.Pd/Co3O4, catalyst for CH4 emissions abatement:Study of SO2 poisoning effect [J]. Topics in Catalysis,2007, 42/43: 425-428.
[33] KANG M, SONG M W, LEE C H. Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts[J]. Applied Catalysis A: General, 2003, 251(1):143-156.
[34] LI X, ZHANG C, HE H, et al. Promotion effect of residual K on the decomposition of N2O over cobalt–cerium mixed oxide catalyst [J]. Catalysis Today, 2007,126(3): 449-455.
[35] LIOTTA L F, CARLO G D, PANTALEO G, et al.Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite catalysts for methane combustion: Correlation between morphology reduction properties and catalytic activity[J]. Catalysis Communications, 2005, 6(5): 329-336.
[36] OSAKOO N, HENKEL R, LOIHA S, et al. Palladiumpromoted cobalt catalysts supported on silica prepared by impregnation and reverse micelle for Fischer–Tropsch synthesis [J]. Applied Catalysis A: General,2013, 464/465: 269-280.
[37] XIE X W, SHEN W J. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance[J]. Nanoscale, 2009, 1(1): 50-60.
[38] ERCOLINO G, STELMACHOWSKI P, GRZYBEK G, et al. Optimization of Pd catalysts supported on Co3O4 for low-temperature lean combustion of residual methane [J]. Applied Catalysis B: Environmental,2017, 206: 712-725.
[39] WANG Y F, ZHANG C B, LIU F D, et al. Welldispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene [J]. Applied Catalysis B: Environmental, 2013, 142(10): 72-79.
[40] DACQUIN J P, DUJARDIN C, GRANGER P. Surface reconstruction of supported Pd on LaCoO3: Consequences on the catalytic properties in the decomposition of N2O [J]. Journal of Catalysis, 2008, 253(1):37-49.
[41] LI J H, LIANG X, XU S C, et al. Catalytic performance of manganese cobalt oxides on methane combustion at low temperature [J]. Applied Catalysis B:Environmental, 2009, 90(1): 307-312.
[42] JODLOWSKI P J, JE?DRZEJCZYK R J, CHLEBDA D, et al. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface [J]. Journal of Catalysis,2017, 350: 1-12.
[43] CAO C, BOURANE A, SCHLUP J R, et al. In situ IR investigation of activation and catalytic ignition of methane over Rh/Al2O3 catalysts [J]. Applied Catalysis A: General, 2008, 344(1): 78-87.
[44] DEVENER B V, ANDERSON S L, SHIMIZU T, et al.In situ generation of Pd/PdO nanoparticle methane combustion catalyst: Correlation of particle surface chemistry with ignition [J]. Journal of Physical Chemistry C, 2015, 80033(80138): 20632-20639.
[45] CHLEBDA D K, JODWSKI P J, JE?DRZEJCZYK R J, et al. Generalised two-dimensional correlation analysis of the Co, Ce, and Pd mixed oxide catalytic systems for methane combustion using in situ infrared spectroscopy[J]. Spectrochim Acta A: Mol Biomol Spectrosc,2018, 192: 202-210.
[46] SCHMAL M, SOUZA M M V M, ALEGRE V V,et al. Methane oxidation—Effect of support, precursor and pretreatment conditions—In situ reaction XPS and DRIFT [J]. Catalysis Today, 2006, 118(3): 392-401.
[47] DAVYDOV A A, ROCHESTER C H. Infrared spectroscopy of adsorbed species on the surface of transition metal oxides [M]. New York, USA: John Wiley &Sons, 1984.
[48] HOFLUND G B, LI Z H. Surface characterization study of a Pd/Co3O4 methane oxidation catalyst [J].Applied Surface Science, 2006, 253(5): 2830-2834.
[49] JODLOWSKI P J, JE?DRZEJCZYK R J, CHLEBDA D, et al. In situ spectroscopic studies of methane catalytic combustion over Co, Ce, and Pd mixed oxides deposited on a steel surface [J]. Journal of Catalysis,2017, 350: 1-12.
[50] HURTADO P, ORD′O?NEZ S, SASTREH, et al. Development of a kinetic model for the oxidation of methane over Pd/Al2O3 at dry and wet conditions [J]. Applied Catalysis B: Environmental, 2004, 51(4): 229-238.
[51] KAZANSKY V B, SERYKH A I, PIDKO E A. DRIFT study of molecular and dissociative adsorption of light paraffins by HZSM-5 zeolite modified with zinc ions:Methane adsorption [J]. Journal of Catalysis, 2004,225(2): 369-373.
[52] STEFANOV P, TODOROVA S, NAYDENOV A, et al. On the development of active and stable Pd–Co/γ-Al2O3 catalyst for complete oxidation of methane [J].Chemical Engineering Journal, 2015, 266: 329-338.