Modeling Nd3+-Yb3+-Tm3+-Er3+ Codoped Telluride Glass Fiber for 0.4 to 2.0 μm Emission Spectra

Expand
  • (State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Online published: 2018-06-17

Abstract

The modeling of rare-earth-doped fiber amplifier is accomplished by utilizing the rate and propagation equations of distinct levels for a laser medium. A complex theoretical model for neodymium (Nd3+), erbium (Er3+), thulium (Tm3+) and ytterbium (Yb3+) codoped telluride glass fiber covering 0.4|2.0 μm emission spectra is presented. The emission spectra of Nd3+-Er3+-Tm3+-Yb3+ codoped telluride fiber are realized with the excitation of both 808 and 980nm lasers pumped at 500mW. Numerical methods are used to calculate the emission spectra covering 0.4|2.0 μm. With the Nd3+, Tm3+ and Yb3+ ion concentrations fixed at 2 £ 1020 ion/m3, the Er3+ ion concentration optimized to 8 £ 1020 ion/m3 and the ˉber length spanning from 0.5 to 2 m, a peak amplified spontaneous emission (ASE) power of 19.8mW is attainable, and a minimum ASE power of 7.96mW can also be achieved. The analytical techniques and results indicate that when a telluride codoped fiber with suitable ion concentrations of Nd3+, Er3+, Tm3+ and Yb3+ is excited by both 980 and 808nm pump lasers, 0.4|2.0 μm emission spectra are attainable for vast optical applications.

Cite this article

NKONDE Sampa, JIANG Chun (姜淳) . Modeling Nd3+-Yb3+-Tm3+-Er3+ Codoped Telluride Glass Fiber for 0.4 to 2.0 μm Emission Spectra[J]. Journal of Shanghai Jiaotong University(Science), 2018 , 23(3) : 352 . DOI: 10.1007/s12204-018-1950-9

References

[1] MINELLY J D, BARNES W L, LAMING R I, etal. Diode-array pumping of Er3+/Yb3+ co-doped ˉberlasers and ampliˉers [J]. IEEE Photonics TechnologyLetters, 1993, 5(3): 301-303. [2] TOWNSEND J E, BARNES W L, JEDRZEJEWSKI K P, et al. Yb3+ sensitized Er3+ doped silica opti-cal ˉber with ultrahigh transfer e±ciency and gain [J].Electronic Letters, 1991, 27(21): 1958-1959. [3] VIENNE G G, CAPLEN J E, DONG L, et al. Fabri-cation and characterization of Yb3+: Er3+ phosphor-silicate ˉbers for lasers [J]. Journal of Lightwave Tech-nology, 1998, 16(11): 1990-2001. [4] BARNES W L, POOLE S B, TOWNSEND J E, et al.Er3+-Yb3+ and Er3+ doped ˉber lasers [J]. Journal ofLightwave Technology, 1989, 7(10): 1461-1465. [5] YAHEL E, HENDY A A. Modeling and optimiza-tion of short Er3+-Yb3+ codoped ˉber lasers [J]. IEEEJournal of Quantum Electronics, 2003, 39(11): 1444-1451. [6] LOZANO W B, DE ARA?UJO C B, MESSADDEQY. Enhanced frequency upconversion in Er3+ doped°uoroindate glass due to energy transfer from Tm3+[J]. Journal of Non-Crystalline Solids, 2002, 311(2):318-323. [7] WANG F, LIU X G. Upconversion multicolorˉne-tuning: Visible to near-infrared emission fromlanthanide-doped NaYF4 nanoparticles [J]. Journal ofthe American Chemical Society, 2008, 130(17): 5642-5643. [8] JIANG C, XU W B. Modeling multiple rare-earth-doped system for white light generation [J]. Journalof Display Technology, 2009, 5(12): 431-437. [9] MURUGAN G S, SUZUKI T, OHISHI Y. Raman char-acteristics and nonlinear optical properties of telluriteand phosphotellurite glasses containing heavy metaloxides with ultrabroad Raman bands [J]. Journal ofApplied Physics, 2006, 100: 023107. [10] NANDI P, JOSE G. Ytterbium-doped P2O5-TeO2glass for laser applications [J]. IEEE Journal of Quan-tum Electronics, 2006, 42(11): 1115-1121. [11] MAN S Q, PUN E Y B, CHUNG P S. Tellurite glassesfor 1.3 mm optical ampliˉers [J]. Optics Communica-tions, 1999, 168: 369-373. [12] WANG J S, VOGEL E M, SNITZER E. Tellurite glass:A new candidate for ˉber devices [J]. Optical Materi-als, 1994, 3: 187-203. [13] XU S Q, SUN H T, DAI S X, et al. Upconversionluminescence of Tm3+/Yb3+-codoped oxyhalide tel-lurite glasses [J]. Solid State Communications, 2005,133: 89-92. [14] DI PASQUALE F, FEDERIGHI M. Improved gaincharacteristics in high concentration Er3+/Yb3+codoped glass waveguide ampliˉers [J]. IEEE Journalof Quantum Electronics, 1994, 30(9): 2127-2131. [15] KAR?ASEK M. Optimum design of Er3+-Yb3+codoped ˉbers for large signal high-pump-power ap-plications [J]. IEEE Journal of Quantum Electronics,1997, 33(10): 1699-1705. [16] HUANG L H, JHA A, SHEN S X, et al. Broadbandemission in Er3+-Tm3+ codoped tellurite ˉber [J]. Op-tics Express, 2004, 12(11): 2429-2434. [17] SHEN S, JHA A, LIU X B, et al. Tellurite glasses forbroadband ampliˉers and integrated optics [J]. Journalof the American Ceramics Society, 2002, 85(6): 1391-1395. [18] YAHEL E, HENDY A A. Modelling, and optimiza-tion of short Er3+-Yb3+ codoped ˉber lasers [J]. IEEEJournal of Quantum Electronics, 2003, 39(11): 1444-1451. [19] GAN F. Optical and spectroscopic properties ofglasses[M]. Shanghai: Shanghai Science and Technol-ogy Press, 1992: 245-246 (in Chinese). [20] KAR?ASEK M. Optimum design of Er3+/Yb3+codoped ˉbers for large-signal high-pump-power ap-plications [J]. IEEE Journal of Quantum Electronics,1997, 33(10): 1699-1705. [21] JEONG H, OH K, HAN S R, et al. Characterizationof broadband ampliˉed spontaneous emission from anEr3+-Tm3+ co-doped silica ˉber [J]. Chemical PhysicsLetters, 2003, 367: 507-511. [22] WANG F, LIU X G. Upconversion multicolor ˉne-tuning: Visible to near-infrared emission fromlanthanide-doped NaYF4 nanoparticles [J]. Journal ofthe American Chemical Society, 2008, 130(17): 5642. [23] DAMAK K, MA^ALEJ R, YOUSEF E S, et al. Thermaland spectroscopic properties of Tm3+ doped TZPPNtransparent glass laser material [J]. Journal of Non-Crystal Solids, 2012, 358(22): 2974-2980. [24] MCCUMBER D E. Einstein relations connectingbroadband emission and absorption spectra [J]. Phys-ical Revision A, 1964, 136(4): 954-957. [25] PAYNE S A, CHASE L L, SMITH L K, et al. In-frared cross-section measurements for crystals dopedwith Er3+, Tm3+, and Ho3+ [J]. IEEE Journal ofQuantum Electronics, 1992, 28(11): 2619-2630.
Options
Outlines

/