The most commonly used and studied hybrid halide perovskite is ABX3, where A usually stands for
CH3NH3, B for Pb, and X for I. A lead-free perovskite with high stability and ideal electronic band structure
would be of essence, especially considering the toxicity of lead. In this work, we have considered 11 metal elements
for the B site and three halide elements (Cl, Br, and I) including various combinations among the three halides
for the X site. A total number of 99 hybrid perovskites are studied to understand how the crystal structure, band
gap and stability can be tuned by the chemistry modification, i.e., the replacement of toxic element, Pb in the
original MAPbX3, with non-toxic metal elements. We find that the favorable substitutes for Pb in MAPbI3 are
Ge and Sn.
WU Jiayia (邬嘉义), QI Wena (戚文), LUO Zheb (罗哲), LIU Kea (刘科), ZHU Honga,c* (朱虹)
. Electronic Structure and Stability of Lead-free Hybrid Halide Perovskites: A Density Functional Theory Study[J]. Journal of Shanghai Jiaotong University(Science), 2018
, 23(1)
: 202
-208
.
DOI: 10.1007/s12204-018-1926-9
[1] NOH J H, IM S H, HEO J H, et al. Chemical managementfor colorful, efficient, and stable inorganicorganichybrid nanostructured solar cells [J]. Nano Letters,2013, 13(4): 1764-1769.
[2] ZHOU H, CHEN Q, LI G, et al. Interface engineeringof highly efficient perovskite solar cells [J]. Science,2014, 345(6196): 542-546.
[3] SHOCKLEY W, QUEISSER H J. Detailed balancelimit of efficiency of p-n junction solar cells [J]. Journalof Applied Physics, 1961, 32(3): 510-519.
[4] BAIKIE T, BARROW N S, FANG Y, et al. A combinedsingle crystal neutron/X-ray diffraction andsolid-state nuclear magnetic resonance study of the hybridperovskites CH3NH3PbX3 (X = I, Br and Cl) [J].Journal of Materials Chemistry A, 2015, 3: 9298-9307.
[5] CHEN Q, MARCO N D, YANG Y, et al. Under thespotlight: The organic-inorganic hybrid halide perovskitefor optoelectronic applications [J]. Nano Today,2015, 10(3): 355-396.
[6] KULKARNI S A, BAIKIE T, BOIX P P, et al. Bandgaptuning of lead halide perovskites using a sequentialdeposition process [J]. Journal of Materials ChemistryA, 2014, 2: 9221-9225.
[7] KITAZAWA N, WATANABE Y, NAKAMURA Y.Optical properties of CH3NH3PbX3 (X = halogen)and their mixed-halide crystals [J]. Journal of MaterialsScience, 2012, 37(17): 3585-3587.
[8] MCMEEKIN D P, SADOUGHI G, REHMANW, et al.A mixed-cation lead mixed-halide perovskite absorberfor tandem solar cells [J]. Science, 2016, 351(6269):151-155.
[9] KRESSE G, FURTHMULLER J. Efficient iterativeschemes for ab initio total-energy calculations usinga plane-wave basis set [J]. Physical Review B, 1996,54(16): 11169-11186.
[10] PERDEWJ P, BURKE K, ERNZERHOFM. Generalizedgradient approximation made simple [J]. PhysicalReview Letters, 1996, 77(18): 3865-3868.
[11] KRESSE G, JOUBERT D. From ultra-soft pseudopotentials to the projector augmented-wave method [J].Physical Review B, 1999, 59(3): 1758-1775.
[12] TOM B, YANAN F, JEANNETTE M K, et al. Synthesisand crystal chemistry of the hybrid perovskite(CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of Materials Chemistry A, 2013,1: 5628-5641.
[13] ONG S P, RICHARDS W D, JAIN A, et al. Pythonmaterials genomics (pymatgen): A robust, open-sourcePython library for materials analysis [J]. ComputationalMaterials Science, 2013, 68: 314-319.
[14] MATHEW K, SINGH A K, GABRIEL J J, et al. MPinterfaces: A materials project based Python tool forhigh-throughput computational screening of interfacialsystems [J]. Computational Materials Science, 2016,122: 183-190.
[15] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybridfunctionals based on a screened coulomb potential[J]. The Journal of Chemical Physics, 2003, 118(18):8207-8215.
[16] PAIER J, MARSMAN M, HUMMER K, et al.Screened hybrid density functionals applied to solids[J]. The Journal of Chemical Physics, 2006, 124(15):154709.
[17] YUAN Y, XU R, XU H T, et al. Nature of the bandgap of halide perovskites ABX3 (A = CH3NH3, Cs; B= Sn, Pb; X = Cl, Br, I): First-principles calculations[J]. Chinese Physics B, 2015, 24(11): 116302.
[18] R¨UHLE S. Tabulated values of the Shockley-Queisserlimit for single junction solar cells [J]. Solar Energy,2016, 130:139 -147.
[19] PAUWELS H, DE VOS A. Determination of the maximumefficiency solar cell structure [J]. Solid-State Electronics,1981, 24(9): 835-843.
[20] KRESSE G, FURTHMLLER J. Efficiency of ab-initiototal energy calculations for metals and semiconductorsusing a plane-wave basis set [J]. ComputationalMaterials Science, 1996, 6(1): 15-50.
[21] CASTELLI I E, GARC′IA-LASTRA J M, THYGESENK S, et al. Bandgap calculations and trends oforganometal halide perovskites [J]. APL Materials,2014, 2(8): 081514.
[22] CHEN T, FOLEY B J, IPEK B, et al. Rotationaldynamics of organic cations in the CH3NH3PbI3perovskite [J]. Physical Chemistry Chemical Physics,2015, 17: 31278-31286.
[23] UMARI P, MOSCONI E, ANGELIS E D. RelativisticGW calculations on CH3NH3PbI3 and CH3NH3SnI3perovskites for solar cell applications [J]. Scientific Reports,2014, 4: 4467.
[24] LIU M, RONG Z Q, MALIK R, et al. Spinel compoundsas multivalent battery cathodes: A systematicevaluation based on ab initio calculations [J]. Energy& Environmental Science, 2015, 8(3): 964-974.
[25] OKU T. Crystal structures of CH3NH3PbI3 andrelated perovskite compounds used for solar cells[C]//Solar Cells-New Approaches and Reviews. Rijeka:InTech, 2015: 77-101.
[26] CONINGS B, DRIJKONINGEN J, GAUQUELIN N,et al. Intrinsic thermal instability of methylammoniumlead trihalide perovskite [J]. Advanced Energy Materials,2015, 5(15): 1500477.