Yttria-stabilized zirconia (YSZ) is widely used as thermal barrier coatings (TBCs) to reduce heat
transfer between hot gases and metallic components in gas-turbine engines. Porous structure can generally reduce
the lattice thermal conductivity of bulk material, so porous YSZ can be potentially used as TBCs with better
thermal performance. In this work, we investigate the thermal conductivity of nanoporous YSZ using the nonequilibrium
molecular dynamics (NEMD) simulation, and comprehensively discuss the effects of cross-sectional
area, pore size, structure length, porosity, Y2O3 concentration and temperature on the thermal conductivity. To
compare with the results of the NEMD simulation, we solve the heat diffusion equation and the gray Boltzmann
transport equation (BTE) to calculate the thermal conductivity of the same porous structure. From the results,
we find that the thermal conductivity of YSZ has a weak dependence on the structure length at the length range
from 10 to 26 nm, which indicates that the majority of heat carriers have very short mean free path (MFP) but
there exists small percentage (about 3%) of phonons with longer MFP (larger than 10 nm) contributing to the
thermal conductivity. The thermal conductivity predicted by NEMD simulation is smaller than that of solving
heat diffusion equation (diffusive limit) with the same porous structure. It shows that the presence of pores affects
phonon scattering and further affects the thermal conductivity of nanoporous YSZ. The results agree well with
the solution of gray BTE with a average MFP of 0.6 nm. The thermal conductivity of nanoporous YSZ weakly
depends on the Y2O3 concentration and temperature, which shows the phonons with very short MFP play the
major contribution to the thermal conductivity. The results help to better understand the heat transfer in porous
YSZ structure and develop better TBCs.
ZHAO Shuaishuaia (赵帅帅), SHAO Chenga (邵成), ZAHIRI Saeida,ZHAO Changyingb (赵长颖), BAO Huaa* (鲍华)
. Thermal Transport in Nanoporous Yttria-Stabilized Zirconia by Molecular Dynamics Simulation[J]. Journal of Shanghai Jiaotong University(Science), 2018
, 23(1)
: 38
-44
.
DOI: 10.1007/s12204-018-1907-z
[1] PADTURE N P, GELL M, JORDAN E H. Thermalbarrier coatings for gas-turbine engine applications [J].Science, 2002, 296(5566): 280-284.
[2] CAO X Q, VASSEN R, STOEVER D. Ceramic materialsfor thermal barrier coatings [J]. Journal of theEuropean Ceramic Society, 2004, 24(1): 1-10.
[3] NATH S, MANNA I, MAJUMDAR J D. Nanomechanicalbehavior of yttria stabilized zirconia (YSZ) basedthermal barrier coating [J]. Ceramics International,2015, 41(4): 5247-5256.
[4] NAIT-ALI B, HABERKO K, VESTEGHEM H, etal. Thermal conductivity of highly porous zirconia[J]. Journal of the European Ceramic Society, 2006,26(16): 3567-3574.
[5] PIA G, CASNEDI L, SANNA U. Porosity and poresize distribution influence on thermal conductivity ofyttria-stabilized zirconia: Experimental findings andmodel predictions [J]. Ceramics International, 2016,42(5): 5802-5809.
[6] SCHLICHTING K W, PADTURE N P, KLEMENS PG. Thermal conductivity of dense and porous yttriastabilizedzirconia [J]. Journal of Materials Science,2001, 36(12): 3003-3010.
[7] PIA G. High porous yttria-stabilized zirconia withligned pore channels: Morphology directionality influenceon heat transfer [J]. Ceramics International,2016, 42(10): 11674-11681.
[8] NAN C W, BIRRINGER R, CLARKE D R, et al. Effectivethermal conductivity of particulate compositeswith interfacial thermal resistance [J]. Journal of AppliedPhysics, 1997, 81(10): 6692-6699.
[9] BOURRET J, TESSIER-DOYEN N, NAIT-ALI B, etal. Effect of the pore volume fraction on the thermalconductivity and mechanical properties of kaolin-basedfoams [J]. Journal of the European Ceramic Society,2013, 33(9): 1487-1495.
[10] CHUNG J D, KAVIANY M. Effects of phonon porescattering and pore randomness on effective conductivityof porous silicon [J]. International Journal of Heatand Mass Transfer, 2000, 43(4): 521-538.
[11] HSIEH T Y, LIN H, HSIEH T J, et al. Thermalconductivity modeling of periodic porous siliconwith aligned cylindrical pores [J]. Journal of AppliedPhysics, 2012, 111(12): 124329.
[12] WANG M, PAN N. Modeling and prediction of theeffective thermal conductivity of random open-cellporous foams [J]. International Journal of Heat andMass Transfer, 2008, 51(5/6): 1325-1331.
[13] WANG M, WANG J, PAN N, et al. Three-dimensionaleffect on the effective thermal conductivity of porousmedia [J]. Journal of Physics D: Applied Physics, 2006,40(1): 260.
[14] GUO Y, WANG M. Lattice Boltzmann modelingof phonon transport [J]. Journal of ComputationalPhysics, 2016, 315: 1-15.
[15] LEE J H, GALLI G A, GROSSMAN J C. NanoporousSi as an efficient thermoelectric material [J]. Nano Letters,2008, 8(11): 3750-3754.
[16] HE Y, DONADIO D, LEE J H, et al. Thermal transportin nanoporous silicon: Interplay between disorderat mesoscopic and atomic scales [J]. ACS Nano, 2011,5(3): 1839-1844.
[17] LAU K C, DUNLAP B I. Molecular dynamics simulationof yttria-stabilized zirconia (YSZ) crystalline andamorphous solids [J]. Journal of Physics: CondensedMatter, 2011, 23(3): 035401.
[18] FREEMAN J J, ANDERSON A C. Thermal conductivityof amorphous solids [J]. Physical Review B, 1986,34(8): 5684.
[19] HE Y, DONADIO D, GALLI G. Morphology and temperaturedependence of the thermal conductivity ofnanoporous SiGe [J]. Nano Letters, 2011, 11(9): 3608-3611.
[20] ZHOU XW, JONES R E. Effects of nano-void density,size and spatial population on thermal conductivity:A case study of GaN crystal [J]. Journal of Physics:Condensed Matter, 2012, 24(32): 325804.
[21] BRINKMAN H W, BRIELS W J, VERWEIJH. Molecular dynamics simulations of yttriastabilizedzirconia [J]. Chemical Physics Letters, 1995,247(4/5/6): 386-390.
[22] SCHELLING P K, PHILLPOT S R. Mechanism ofthermal transport in zirconia and yttria-stabilized zirconiaby molecular-dynamics simulation [J]. Journalof the American Ceramic Society, 2001, 84(12): 2997-3007.
[23] CARSON J K, LOVATT S J, TANNER D J, et al.An analysis of the influence of material structure onthe effective thermal conductivity of theoretical porousmaterials using finite element simulations [J]. InternationalJournal of Refrigeration, 2003, 26(8): 873-880.
[24] MURTHY J Y, MATHUR S R. Computation of submicronthermal transport using an unstructured finitevolume method [J]. Journal of Heat Transfer, 2002,124(6): 1176-1181.
[25] TIAN Z, HU H, SUN Y. A molecular dynamics studyof effective thermal conductivity in nanocomposites[J]. International Journal of Heat and Mass Transfer,2013, 61: 577-582.
[26] PLIMPTON S. Fast parallel algorithms for shortrangemolecular dynamics [J]. Journal of ComputationalPhysics, 1995, 117(1): 1-19.
[27] VAN BEEST B W H, KRAMER G J, VAN SANTENR A. Force fields for silicas and aluminophosphatesbased on ab initio calculations [J]. Physical Review Letters,1990, 64: 1955.
[28] ALDEBERT P, TRAVERSE J P. Structure and ionicmobility of zirconia at high temperature [J]. Journalof the American Ceramic Society, 1985, 68(1): 34-40.[29] MINERVINI L, GRIMES R W, SICKAFUS K E. Disorderin pyrochlore oxides [J]. Journal of the AmericanCeramic Society, 2000, 83(8): 1873-1878.
[30] SCHELLING P K, PHILLPOT S R, KEBLINSKI P.Comparison of atomic-level simulation methods forcomputing thermal conductivity [J]. Physical ReviewB, 2002, 65(14): 144306.
[31] LUKES J R, TIEN C L. Molecular dynamics simulationof thermal conduction in nanoporous thin films [J].Microscale Thermophysical Engineering, 2004, 8(4):341-359.
[32] ZHANG X, BAO H, HU M. Bilateral substrate effecton the thermal conductivity of two-dimensional silicon[J]. Nanoscale, 2015, 7(14): 6014-6022.