Link Budget Analysis for Massive-Antenna-Array-Enabled Terahertz Satellite Communications

Expand
  • (University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China)

Online published: 2018-02-01

Abstract

Broadband satellite communications can enable a plethora of applications in customer services, global nomadic coverage and disaster prediction and recovery. Terahertz (THz) band is envisioned as a key satellite communication technology due to its very broad bandwidth, astrophysical observation advantages and device maturing in recent years. In this paper, a massive-antenna-array-enabled THz satellite communication system is proposed to be established in Tanggula, Tibet, where the average altitude is 5.068 km and the mean-clear-sky precipitable water vapor (PWV) is as low as 1.31 mm. In particular, a link budget analysis (LBA) framework is developed for THz space communications, considering unique THz channel properties and massive antenna array techniques. Moreover, practical siting conditions are taken into account, including the altitude, PWV, THz spectral windows, rain and cloud factors. On the basis of the developed link budget model, the massive antenna array model, and the practical parameters in Tanggula, the performances of signal-to-noise ratio (SNR) and capacity are evaluated. The results illustrate that 1Tbit/s is attainable in the 0.275—0.37 THz spectral window in Tanggula, by using an antenna array of the size 64.

Cite this article

ZHEN Ruchen (甄儒辰), HAN Chong* (韩充) . Link Budget Analysis for Massive-Antenna-Array-Enabled Terahertz Satellite Communications[J]. Journal of Shanghai Jiaotong University(Science), 2018 , 23(1) : 20 -27 . DOI: 10.1007/s12204-018-1904-2

References

[1] EMRICK R, CRUZ P, CARVALHO N B, et al. The sky’s the limit: Key technology and market trends in satellite communications [J]. IEEE Microwave Magazine,2014, 15(2): 65-78. [2] SUEN J Y. Terabit-per-second satellite links: A path toward ubiquitous terahertz communication [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016,37(7): 615-639. [3] AKYILDIZ I F, JORNET J M, HAN C. Terahertz band: Next frontier for wireless communications [J].Physical Communication, 2014, 12: 16-32. [4] CIANCA E, ROSSI T, YAHALOM A, et al. EHF for satellite communications: The new broadband frontier[J]. Proceedings of the IEEE, 2011, 99(11): 1858-1881. [5] WOOTTEN A, THOMPSON A R. The Atacama large millimeter/submillimeter array [J]. Proceedings of the IEEE, 2009, 97(8): 1463-1471. [6] WOOLARD D L, BROWN E R, PEPPER M, et al.Terahertz frequency sensing and imaging: A time of reckoning future applications? [J]. Proceedings of the IEEE, 2005, 93(10): 1722-1743. [7] KULESA C. Terahertz spectroscopy for astronomy:From comets to cosmology [J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 232-240. [8] SIEGEL P H. THz instruments for space [J]. IEEE Transactions on Antennas and Propagation, 2007,55(11): 2957-2965. [9] AKYILDIZ I F, JORNET J M, HAN C. TeraNets:Ultra-broadband communication networks in the terahertz band [J]. IEEE Wireless Communications, 2014,21(4): 130-135. [10] JORNET J M, AKYILDIZ I F. Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band [J]. IEEE Transactions on Wireless Communications, 2011, 10(10): 3211-3221. [11] ALBRECHT J D, ROSKER M J, WALLACE H B,et al. THz electronics projects at DARPA: Transistors,TMICs, and amplifiers [C]//IEEE MTT-S International Microwave Symposium Digest (MTT). [s.l.]:IEEE, 2010: 1118-1121. [12] TUCEK J C, BASTEN M A, GALLAGHER D A, et al. A 100 mW, 0.670 THz power module [C]//Vacuum Electronics Conference. [s.l.]: IEEE, 2012: 31-32. [13] TUCEK J C, BASTEN M A, GALLAGHER D A, et al. Testing of a 0.850 THz vacuum electronic power amplifier [C]// IEEE 14th International Vacuum Electronics Conference (IVEC). [s.l.]: IEEE, 2013: 1-2. [14] TUCEK J C, BASTEN M A, GALLAGHER D A,et al. Operation of a compact 1.03 THz power amplifier[C]//2016 IEEE International Vacuum Electronics Conference (IVEC). [s.l.]: IEEE, 2016: 1-2. [15] ZHANG F, SONG K, LI G, et al. Sub-THz four-way waveguide power combiner with low insertion loss [J].Journal of Infrared, Millimeter, and Terahertz Waves,2014, 5(35): 451-457. [16] DEAL W R, LEONG K, RADISIC V, et al. Low noise amplification at 0.67 THz using 30 nm InP HEMTs [J]. IEEE Microwave and Wireless Components Letters,2011, 21(7): 368-370. [17] LIN C, LI G Y. Indoor terahertz communications:How many antenna arrays are needed? [J]. IEEE Transactions on Wireless Communications, 2015,14(6): 3097-3107. [18] DE GRAAUW T. The atacama large millimeter/submillimeter array [C]//IEEE International Conference on Infrared, Millimeter and Terahertz Waves(IRMMW-THz ). [s.l.]: IEEE, 2011: 1-4. [19] LIN C, LI G Y. Adaptive beamforming with resource allocation for distance-aware multi-user indoor terahertz communications [J].IEEE Transactions on Communications,2015, 63(8): 2985-2995. [20] HAN C, BICEN A O, AKYILDIZ I F. Multiray channel modeling and wideband characterization for wireless communications in the terahertz band[J]. IEEE Transactions on Wireless Communications,2015, 14(5): 2402-2412. [21] BERK A, ANDERSON G P, ACHARYA P K, et al.Modtran5: 2006 update [C]//Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII. Orlando (Kissimmee), Florida:SPIE, 2006: 62331F1-8.
Options
Outlines

/