An integrated fuzzy min-max neural network (IFMMNN) is developed to avoid the classification result
influenced by the input sequence of training samples, and the learning algorithm can be used as pure clustering,
pure classification, or a hybrid clustering classification. Three experiments are designed to realize the aim. The
serial input of samples is changed to parallel input, and the fuzzy membership function is substituted by similarity
matrix. The experimental results show its superiority in contrast with the original method proposed by Simpson.
HU Jing* (胡静), LUO Yiyuan (罗宜元)
. Integration of Learning Algorithm on Fuzzy Min-Max Neural Networks[J]. Journal of Shanghai Jiaotong University(Science), 2017
, 22(6)
: 733
-741
.
DOI: 10.1007/s12204-017-1894-5
[1] SINGH H, ABDULLAH M Z, QUTIESHAT A. Detectionand classification of electrical supply voltagequality to electrical motors using the fuzzy-min-maxneural network [C]//IEEE International Electric Machines& Drives Conference (IEMDC). Niagara Falls:IEEE, 2011: 961-965.
[2] GOSWAMI B, BHANDARI G, GOSWAMI S. Fuzzymin-max neural network for satellite infrared imageclustering [C]//Third International Conferenceon Emerging Applications of Information Technology(EAIT). Kolkata: IEEE, 2012: 239-242.
[3] KOTHARI R, JAIN V. Learning from labeled and unlabeleddata using minimal number of queries [J]. IEEETrans on Neural Networks, 2003, 14 (6): 1096-1105.
[4] SIMPSON P K. Fuzzy min-max neural networks[C]//IEEE International Joint Conference on NeuralNetworks. [s.l.]: IEEE, 1991: 1658-1669.
[5] SIMPSON P K. Fuzzy min-max neural networks. Part1. Classification [J]. IEEE Transactions on Neural Networks,992, 3(5): 766-786.
[6] SIMPSON P K. Fuzzy min-max neural networks. Part2. Clustering [J]. IEEE Transactions on Fuzzy Systems,1993, 1(1): 32-45.
[7] SHINDE S V, KULKARNI U V. Mining classificationrules from fuzzy min-max neural network [C]//2014International Conference on Computing, Communicationand Networking Technologies (ICCCNT). Hefei:IEEE, 2014: 1-7.
[8] DAVTALAB R, DEZFOULIAN M H, MANSOORIZADEHM. Multi-level fuzzy min-max neuralnetwork classifier [J]. IEEE Transactions on NeuralNetworks and Learning Systems, 2013, 3(25): 470-482.
[9] GOSWAMI B, BHANDARI G, GOSWAMI S. Fuzzymin-max neural network for satellite infrared imageclustering [C]//2012 Third International Conferenceon Emerging Applications of Information Technology(EAIT). Kolkata: IEEE, 2012: 239-242.
[10] NANDEDKAR A V, BISWAS P K. A granular reflexfuzzy min-max neural network for classification [J].IEEE Transactions on Neural Networks, 2009, 7(20):1117- 1134.
[11] CHEN X, JIN D M, LI Z J. Recursive training formulti-resolution fuzzy min-max neural network classifier[C]//Proceedings of 6th International Conferenceon Solid-State and Integrated-Circuit Technology.Shanghai: IEEE, 2001: 131-134.
[12] LIU J H, FENG J. Diagnosis for oil pipeline based onfuzzy min-max neural network [J]. Journal of NanjingUniversity of Aeronautics & Astronautics, 2011, 43(5):199-202 (in Chinese).
[13] HATTORI K, TAKAHASHI M. A new edited knearestneighbor rule in the pattern classification problem[J]. Pattern Recognition, 2000, 33(3): 521-528.
[14] JOHNSON S C. Hierarchical clustering schemes [J].Psychometrika, 1967, 32(3): 241-254.
[15] BLAKE C, KEOGH E, MERZ C J. UCI repositoryof machine learning databases [EB/OL]. (2016-10-26).http://www.ics.uci.edu/~mlearn/MLRepository.htm1.1998??