The rate equations and power evolution equations of erbium-doped telluride glass fiber amplifier for both 1.530 and 2.700 μm lasers are solved numerically, the dependences of gain spectra on fiber length, dopant concentration and pump power are analyzed, and the gain of 2.700 μm laser is calculated and compared with the experimental result from reference. The numerical analysis shows that with 8 × 1024 ion/m3 erbium ion concentration, 5 m fiber length and 600 mW pump power, the gains at 1.530 and 2.700 μm may achieve 23dB or so. With larger power pump and higher dopant concentration, a net gain of 17 dB is obtained from the Er3+-doped telluride glass fiber amplifier for 110mW input signal. This fiber amplifier is promising for both 1.530 μm signal amplification and 2.700 μm laser amplification.
YIN Jinpeng1 (尹金鹏), GAO Wenyuan1* (高文元), HAO Liping1 (郝丽萍), LIU Guishan1 (刘贵山),
. Theoretical Analysis of Er3+-Doped Telluride Glass Fiber Amplifier for 2.700 μm Laser Amplification[J]. Journal of Shanghai Jiaotong University(Science), 2017
, 22(5)
: 513
-516
.
DOI: 10.1007/s12204-017-1869-6
[1] PEL′EA L, BRAUD A, DOUALAN J L, et al. Wavelength conversion in Er3+ doped chalcogenide fibers for optical gas sensors [J]. Optics Express, 2015, 23(4):4163-4172.
[2] ZAJAC A, SKORCZAKOWSKIM, SWIDERSKI J, et al. Electrooptically Q-switched mid-infrared Er: YAG laser for medical applications [J]. Optics Express, 2004,12(21): 5125-5130.
[3] CHAI G Q, DONG G P, QIU J R, et al. Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals [J]. Scientific Reports,2013. https://doi.org/10.1038/srep01598 (published online).
[4] HUANG F F, LI X, LIU X Q, et al. Sensitizing effect of Ho3+ on the Er3+: 2.7μm-emission in fluoride glass[J]. Optical Materials, 2014, 36(5): 921-925.
[5] ZHAN H, ZHANG A D, HE J L, et al. Enhanced 2.7 μm emission of Er/Pr-codoped water-free fluorotellurite glasses [J]. Journal of Alloys and Compounds,2014, 582: 742-746.
[6] MA Y Y, GUO Y Y, HUANG F F, et al. Spectroscopic properties in Er3+ doped zinc- and tungsten-modified tellurite glasses for 2.7 μm laser materials [J]. Journal of Luminescence, 2014, 147(2): 372-377.
[7] KANG S L, CHEN D D, PAN Q W, et al. 2.7 μm emission in Er3+-doped transparent tellurite glass ceramics[J]. Optical Materials Express, 2016, 6(6): 1861-1870.
[8] SCHWEIZER T, BRADY D J, HEWAK D W. Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications[J]. Optics Express, 1997, 1(4): 102-107.
[9] SEDDON A B, TANG Z Q, FUMISS D, et al. Progress in rare-earth-doped mid-infrared fiber lasers [J]. Optics Express, 2010, 18(25): 26704-26719.
[10] JACKSON S D, KING T A, POLLNAU M. Diodepumped 1.7W erbium 3 μm fiber laser [J]. Optics Letters,1999, 24(16): 1133-1135.
[11] LABADIE L, WALLNER O. Mid-infrared guided optics:A perspective for astronomical instruments [J].Optics Express, 2009, 17(3): 1947-1962.
[12] HENDERSON-SAPIR O, MUNCH J, OTTAWAY D J. New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers [J]. Optics Express,2016, 24(7): 6869-6883.
[13] ZHU X S, JAIN R. Watt-level Er-doped and Er-Prcodoped ZBLAN fiber amplifiers at the 2.7—2.8 μm wavelength range [J]. Optics Letters, 2008, 33(14):1578-1580.