Abstract: Gain and emission spectrum characteristics of Tm3+-doped telluride glass fibers pumped with 465 nm lasers are analyzed. The rate and power propagation equation groups of the fibers are solved numerically and the effects of the fiber parameters including active ion concentration, length and pump power on the gain spectra and amplified spontaneous emission (ASE) spectra are analyzed. The results show that with a pump parameter of 465 nm/200 mW, a doping concentration of 2.5×1025 ion/m3 and a fiber length of 16 m, the gain and ASE spectra can cover from 1.100 to 1.900 μm, and the gain and ASE power peaks can reach 52 dB and 8 mW, respectively.
ABDALLA Saadelnour, JIANG Chun* (姜淳)
. Gain and Emission Spectrum Characteristics of 465 nm Laser Diode Pumped Tm3+-Doped Telluride Glass Fibers[J]. Journal of Shanghai Jiaotong University(Science), 2017
, 22(4)
: 402
-405
.
DOI: 10.1007/s12204-017-1853-1
[1] NAITO T, TANAKA T, TORII K, et al. A broadband distributed Raman amplifier for bandwidths beyond 100 nm [C]//OFC2002. Anaheim, California: OSA,2002: 116-117. [2] PROVINO L, MUSSOT A, LANTZ E, et al. Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement[J]. Journal of the Optical Society of America B, 2003,20(7): 1532-1537. [3] YEH C H, LEE C C, CHI S. 120-nm bandwidth erbium-doped fiber amplifier in parallel configuration[J]. IEEE Photonics Technology Letters, 2004, 16(7):1637-1639. [4] MAN S Q, PUN E Y B, CHANG P S. Telluride glasses for 1.3 μm optical amplifiers [J]. Optics Communications,1999, 168: 369-373. [5] TAYLOR E R M, NG L N, NILSSON J, et al.Thulium-doped tellurite fiber amplifier [J]. IEEE Photonics Technology Letters, 2004, 16(3): 777-779. [6] ZHOU B, LIN H, PUN E Y B. Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 μm wavelength region [J]. Optics Express, 2010, 18(18): 18805-18810. [7] EVANS C A, IKONI′C Z, RICHARDS B, et al. Numerical rate equation mode ling of a 2.1 μm Tm3+/Ho3+ co-doped tellurite fiber laser [J]. Journal of Lightwave Technology, 2009, 27(19): 4280-4288. [8] WHITLEY T J, WYATT R. Alternative Gaussians spot size polynomial for use with doped fiber amplifier[J]. IEEE Photonics Technology Letters, 1993, 5(11):1325-1327. [9] GILES C R, DESURVIRE E. Modeling erbium-doped fiber amplifier [J]. IEEE Journal of Lightwave Technology,1991, 9(2): 271-283. [10] EMAMI S D, RASHID H A A, ZARIFI A, et al. Microbending based optical band-pass filter and its application in S-band thulium-doped fiber amplifier [J]. Optics Express, 2012, 20(28): 29784-29797. [11] WANG J J, LIANG S J, KANG Q Y, et al. Broadband silica-based thulium doped fiber amplifier employing multi-wavelength pumping [J]. Optics Express, 2016,24(20): 23001-23008. [12] LI Z, HEIDT A M, DANIEL J M O, et al, Thuliumdoped fiber amplifier for optical communications at 2 μm [J]. Optics Express, 2013, 21(8): 9289-9297. [13] LI Z, HEIDT A M, SIMAKOV N, et al. Diode-pumped wideband thulium-doped fiber amplifiers for optical communications in the 1 800—2 050 nm window [J].Optics Express, 2013, 21(22): 26450-26455. [14] SIMAKOV N, LI Z H, JUNG Y M, et al. High gain holmium-doped fibre amplifiers [J]. Optics Express,2016, 24(13): 13946-13956.