This paper presents a method to solve the problems of solutions for integer differential and partial
differential equations using the convergence of Adomian’s Method. In this paper, we firstly use the convergence
of Adomian’s Method to derive the solutions of high order linear fractional equations, and then the numerical
solutions for nonlinear fractional equations. we also get the solutions of two fractional reaction-diffusion equations.
We can see the advantage of this method to deal with fractional differential equations.
HAO Lili1,2 (郝丽丽), LI Xiaoyan1* (李晓艳), LIU Song1 (刘松), JIANG Wei1 (蒋威)
. Adomian’s Method Applied to Solve Ordinary and Partial Fractional Differential Equations[J]. Journal of Shanghai Jiaotong University(Science), 2017
, 22(3)
: 371
-376
.
DOI: 10.1007/s12204-017-1846-0
[1] HILFER R. Applications of fractional calculus inphysics [M]. Orlando, USA: Academic Press, 1999.
[2] SAMKO S G, KILBAS A A, MARICHEV O I. Fractionalintegrals and derivatives [M]. Yverdon, SWIT:Theory and Applications, Gordon and Breach, 1993.
[3] PODLUBNY I. Fractional differential equations [D].San Diego, USA: Academic Press, 1999.
[4] LAKSHMIKANTHAM V, LEELA S, DEVI J V. Theoryof Fractional Dynamic Systems [M]. Cambridge,UK: Cambridge University Press, 2009.
[5] RIVERO M. Linear fractional differential equationswith variable coefficients [J]. Applied Mathematics Letters,2008, 21(3): 892-897.
[6] RIDA S I, EI-SAYED M A. On the solutions of timefractional reaction-diffusion equation [J]. Communicationsin Nonlinear Science and Numerical Simulation,2010, 15(12): 3847-3854.
[7] JAFARIA H, NAZARIB M, KHALIQUEA C M. Anew approach for solving a system of fractional partialdifferential equations [J]. Computers Mathematics withApplications, 2013, 20(5): 838-843.
[8] DAS S, GUPTA P K, GHOSH P. An approximate solutionof nonlinear fractional reaction-diffusion equation[J]. Applied Mathematical Modelling, 2011, 35(8):4071-4076.
[9] BONILLA B, RIVERO M, TRUJILO J J. On systemsof linear fractional differential equations with constantcoefficients [J]. Applied Mathematics with Applications,2007, 187(1): 68-78.
[10] ZHANG H, WU D Y. Variation of constant formulafor time invariant and time varying Caputo fractionaldifferential systems [J]. Journal of Mathematical Researchand Applications, 2014, 34(5): 449-560.
[11] LI C P, CHEN A, YE J J. Numerical approaches tofractional calculus and fractional ordinary differentialequation [J]. Journal of Computational Physics, 2011,230(9): 3352-3368.
[12] JUMAEIE G. Laplace’s transform of fractional ordervia the Mittag-Leffler function and modified Riemann-Liouville derivative [J]. Applied Mathematics Letters,2009, 22(6): 1659-1664.
[13] BUTERA S, PAOLA M D. Fractional differentialequations solved by using Merlin transform [J]. Communicationsin Nonlinear Science and Numerical Simulation,2014, 19(7): 2220-2227.
[14] AYAZ F. Solutions of the systems of differential equationsby differential transform method [J]. AppliedMathematical Modelling, 2008, 147(2): 547-567.
[15] CHEN W, YE L J, SUN H G. Fractional diffusionequations by Kansa method [J]. Computers Mathematicswith Applications, 2010, 59(5): 1614-1620.
[16] DUAN J C, LIU Z H, ZHANG F K. Analytical solutionand numerical solution to end lymph equation usingfractional derivative [J]. Annal of Differential Equations,2008, 24(7): 9-12.
[17] ADOMIAN G. Nonlinear stochastic systems theoryand applications to physics [M]. Amsterdam, HOLLAND:Springer, 1989.
[18] ADOMIAN G. A review of the decomposition methodand some recent results for nonlinear equations [J]. AppliedMathematical Modelling, 1990, 13(7): 17-43.
[19] ABBAOUI K, CHERRUAULT Y. Convergence ofAdomian’s method applied to differential equations[J]. Computers Mathematics with Applications, 1994,28(5): 103-109.
[20] ABBAOUI K, CHERRUAULT Y. Adomian’s polynomialfor nonlinear operators [J]. Applied MathematicalModelling, 1996, 24(1): 59-65.
[21] ABBAOUI K, CHERRUAULT Y, SENG V. Practicalformulae for calculus of variable adomian polynomials[J]. Applied Mathematical Modelling, 2013, 33(2): 175-188.