[1] Jin J H, Ko S H, Ryoo C K. Fault tolerant control for satellites with four reaction wheels [J]. Control Engineering Practice, 2008, 16(10): 1250-1258.
[2] Hu Q L. Robust adaptive sliding-mode fault-tolerant control with L2-gain performance for flexible spacecraft using redundant reaction wheels [J]. IET Control Theory and Applications, 2009, 4(6): 1055-1070.
[3] Meng Q, Zhang T, Song J Y. Modified model-based fault-tolerant time-varying attitude tracking control of uncertain flexible satellites [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(11): 1827-1841.
[4] Hu Q L, Xiao B, Friswell M I. Robust faulttolerant control for spacecraft attitude stabilization subject to input saturation [J]. IET Control Theory and Application, 2011, 5(2): 271-282.
[5] Lee H, Kim Y. Fault-tolerant control scheme for satellite attitude control system [J]. IET Control Theory and Application, 2010, 4(8): 1436-1450.
[6] Xiao B, Hu Q L. Fault-tolerant attitude control for flexible spacecraft without angular velocity magnitude measurement [J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1556-1561.
[7] Boˇskovi′c JD, Li SM,MehraRK. Robust adaptive variable structure control of spacecraft under control input saturation [J]. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 14-22.
[8] Bang H, Tahk M J, Choi H D. Large angle attitude control of spacecraft with actuator saturation [J].Control Engineering Practice, 2003, 11: 989-997.
[9] Cai W C, Liao X H, Song Y D. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft [J]. Journal of Guidance, Control, and Dynamics,2008, 31(5): 1456-1463.
[10] Zou A M, Kumar K D. Adaptive fuzzy fault-tolerant attitude control of spacecraft [J]. Control Engineering Practice, 2011, 19: 10-21.
[11] Hu Q L, Xiao B. Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness [J]. Nonlinear Dynamics, 2011, 64: 13-23.
[12] Horri N M, Palmer P, Roberts M. Design and validation of inverse optimization software for the attitude control of microsatellites [J]. Acta Astronautica, 2011,69: 997-1006.
[13] Xin M, Pan H. Indirect robust control of spacecraft via optimal control solution [J] IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1798-1809.
[14] Nayeri M R D, Alasty A, Daneshjou K. Neural optimal control of flexible spacecraft slew maneuver[J]. Acta Astronautica, 2004, 55: 817-827.
[15] Zheng J H, Banks H G, Alleyne H. Optimal attitude control for three-axis stabilized flexible spacecraft[J]. Acta Astronautica, 2005, 56: 519-528.
[16] Park Y. Robust and optimal attitude stabilization of spacecraft with external disturbances [J]. Aerospace Science and Technology, 2005, 9: 253-259.
[17] Kang W. Nonlinear H∞ control and its application to rigid spacecraft [J]. IEEE Transactions on Automatic Control, 1995, 40(7): 1281-1285.
[18] Zheng Q, Wu F. Nonlinear H∞ control designs with axisymmetric spacecraft control [J]. Journal of Guidance,Control, and Dynamics, 2009, 32(3): 850-859.
[19] Liu C S, Jiang B. H∞ fault-tolerant control for timevaried actuator fault of nonlinear system [J]. International Journal of Systems Science, 2014, 45(12): 2447-2457.
[20] Li Z, Hu Y, Liu Y, et al. Adaptive inverse control of non-linear systems with unknown complex hysteretic non-linearities [J]. IET Control Theory and Applications,2012, 6(1): 1-7.
[21] Krsti′c M, Li Z H. Inverse optimal design of Input-to-State stabilizing nonlinear controllers [J]. IEEE Transactions on Automatic Control, 1998, 43(3): 336-350.
[22] Cai X S, Han Z Z. Inverse optimal control of nonlinear systems with structural uncertainty [J]. IET control Theory and Applications, 2005, 152(1): 79-83.
[23] Bharadwaj S, Qsipchuk M, Mease K D, et al. Geometry and inverse optimality in global attitude stabilization[J]. Journal of Guidance, Control, and Dynamics,1998, 21(6): 930-939.
[24] Krsti′c M, Tsiotras P. Inverse optimal stabilization of a rigid spacecraft [J]. IEEE Transactions on Automatic Control, 1999, 44(5): 1042-1049.
[25] Luo W C, Chu Y C, Ling K V. H∞ inverse optimal attitude-tracking control of rigid spacecraft [J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):481-493.
[26] Luo W C, Chu Y C, Ling K V. Inverse optimal adaptive control for attitude tracking of spacecraft[J]. IEEE Transactions on Automatic Control, 2005,50(11): 1639-1654.
[27] Krsti′c M, Kanellakopoulos I, Kokotovic P V.Nonlinear and adaptive control design [M]. New York:Wiley, 1995.
[28] Ahmed J, Coppola V T, Bernstein D S. Adaptive asymptotic tracking of spacecraft attitude notion with inertia matrix identification [J]. Journal of Guidance,Control, and Dynamics, 1998, 21(5), 684-691.
[29] Chen Z Y, Huang J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control[J]. IEEE Transaction on Automatic Control, 2009,54(3): 600-605.
[30] Gao W Z, Selmic R R. Neural network control of a class of nonlinear systems with actuator saturation [J].IEEE Transactions on Neural Networks, 2006, 17(1):147-156.
[31] Hu Q L, Xiao B. Intelligent proportional-derivative control for flexible spacecraft attitude stabilization with unknown input saturation [J]. Aerospace Science and Technology, 2012, 23: 63-74.
[32] Funahashi K I. On the approximate realization of continuous mappings by neural networks [J]. Neural Networks, 1989, 2(3): 183-192.
[33] Khalil H K. Nonlinear systems [M]. Upper Saddle River, NJ: Prentice-Hall, 1996.
[34] Yao B, Tomizuka M. Smooth robust adaptive sliding mode control of robot manipulators with guaranteed transient performance [J]. Journal of Dynamics systems,Measurement and Control, 1996, 118(4): 764-775.