Journal of Shanghai Jiaotong University(Science) >
Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm
Online published: 2015-03-10
For the question that fuzzy c-means (FCM) clustering algorithm has the disadvantages of being too sensitive to the initial cluster centers and easily trapped in local optima, this paper introduces a new metric norm in FCM and particle swarm optimization (PSO) clustering algorithm, and proposes a parallel optimization algorithm using an improved fuzzy c-means method combined with particle swarm optimization (AF-APSO). The experiment shows that the AF-APSO can avoid local optima, and get the best fitness and clustering performance significantly.
MAO Li1 (毛力), SONG Yi-chun1* (宋益春), LI Yin1 (李引),YANG Hong2 (杨弘), XIAO Wei2 (肖炜) . Research of Improved Fuzzy c-means Algorithm Based on a New Metric Norm[J]. Journal of Shanghai Jiaotong University(Science), 2015 , 20(1) : 51 -55 . DOI: 10.1007/s12204-015-1587-x
[1] Sulaiman S N, Isa N A M. Adaptive fuzzy-K-means clustering algorithm for image segmentation [J]. IEEE Transactions on Consumer Electronics, 2010, 56(4):2661-2668.
[2] Li J, Fan H, Yuan D, et al. Kernel function clustering based on ant colony algorithm [C]// Proceedings of the 4th International Conference on Natural Computation.Jinan, China: IEEE, 2008: 1-5.
[3] Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters [J]. Cybernetics and Systems, 1973, 3(3): 32-57.
[4] Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M]. New York: Plenum Press,1981: 10-16.
[5] Wu K L, Yang M S. Alternative c-means clustering algorithms [J]. Pattern Recognition, 2002, 35(10):2267-2278.
[6] Ramathilagam S, Huang Y M. Extended Gaussian kernel version of fuzzy c-means in the problem of data analyzing [J]. Expert Systems with Applications, 2011,38(4): 3793-3805.
[7] Kennedy J, Eberhart R. Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks. [s.l.]: IEEE, 1995: 1942-1948.
[8] Qu J, Shao Z, Liu X. Mixed PSO clustering algorithm using point symmetry distance [J]. Journal of Computer Information Systems, 2010, 6 (6): 2027-2035.
[9] Bratton D, Kennedy J. Defining a standard for particle swarm optimization [C]// Proceedings of the IEEE Swarm Intelligence Symposium (SIS 2007). [s.l.]:IEEE, 2007: 120-127.
[10] Katherasan D, Elias J V, Sathiya P, et al. Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm [J]. Journal of Intelligent Manufacturing,2014, 25(1): 67-76.
[11] van den Bergh F, Engelbrecht A P. A new locally convergent particle swarm optimizer [C]//Proceedings of the IEEE International Conference on Systems,Man, and Cybernetics. [s.l.]: IEEE, 2002: 6-9.
/
〈 |
|
〉 |