This paper designs and fabricates CeO2 nanoparticles on a large scale by hydrolysis and oxidation of cerium carbide. The electrochemical supercapacitor behavior of CeO2 nanoparticles was investigated. The nickel foam (NF) supported CeO2 nanoparticles show a high areal capacitance of 119 mF/cm2, demonstrating a strong synergistic effect between NF and CeO2 nanoparticles. The high capacitance of the CeO2/NF nanoparticles is possibly due to an improved conductivity by NF and a better utilization of CeO2 nanoparticles.
HU Ye-min* (胡业旻), SHI Tao-tao (史涛涛), NI Jian-sen (倪建森), JIN Hong-ming (金红明), ZHU Ming-yuan (朱明原), LI Ying (李瑛), BAI Qin (白琴)
. Super-Capacitive Performances of Nickel Foam Supported CeO2 Nanoparticles[J]. Journal of Shanghai Jiaotong University(Science), 2012
, 17(5)
: 513
-516
.
DOI: 10.1007/s12204-012-1316-7
[1] Conway B E. Electrochemical supercapacitors: Scientific fundamental and technological applications [M].New York: Kluwer Academic Publishers, 1999.
[2] Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nature Materials, 2008, 7: 845-854.
[3] Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors [J]. Chemical Society Reviews, 2012, 41: 797-828.
[4] Conway B E, PellWG. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J].Journal of Solid State Electrochemistry, 2003, 7: 637-644.
[5] Xue T, Xu C L, Zhao D D, et al. Electrodeposition of mesoporous manganese dioxide supercapacitor electrodes through self-assembled triblock copolymer templates [J]. Journal of Power Sources, 2007, 164:953-958.
[6] Chen W C, Hu C C, Wang C C, et al. Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors [J].Journal of Power Sources, 2004, 125: 292-298.
[7] Takasu Y, Murakami Y. Design of oxide electrodes with large surface area [J]. Electrochimica Acta, 2000, 45: 4135-4141.
[8] Zhou Y, Switzer J A. Growth of cerium (IV) oxide films by the electrochemical generation of base method [J]. Journal of Alloys and Compounds, 1996, 237: 1-5.
[9] Wang Y, Guo C X, Liu J H, et al. CeO2 nanoparticles/graphene nanocomposite-based high performance supercapacitor [J]. Dalton Transactions, 2011, 40:6388-6391.
[10] Chou S L, Wang J Z, Liu H K, et al. Electrochemical deposition of porous Co(OH)2 nanoflake films on stainless steel mesh for flexible supercapacitors [J]. Journal of The Electrochemical Society, 2008, 155: A926-A929.
[11] Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide [J]. Journal of The Electrochemical Society, 2000, 147: 444-450.
[12] Chou S L, Wang J Z, Chew S Y, et al. Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors [J]. Electrochemistry Communications, 2008, 10:1724-1727.
[13] Wang Y L, Zhao Y Q, Xu C L. May 3D nickel foam electrode be the promising choice for supercapacitors [J]. Journal of Solid State Electrochemistry, 2012, 16:829-834.
[14] Medway S L, Lucas C A, Kowal A, et al. In situ studies of the oxidation of nickel electrodes in alkaline solution [J]. Journal of Electroanalytical Chemistry,2006, 587: 172-181.
[15] Zheng G Y, Hu L B, Wu H, et al. Paper supercapacitors by a solvent-free drawing method [J]. Energy & Environmental Science, 2011, 4: 3368-3373.
[16] Li R Z, Ren X, Zhang F, et al. Synthesis of Fe3O4@SnO2 core-shell nanorod film and its application as a thin-film supercapacitor electrode [J]. Chemical Communications, 2012, 48: 5010-5012.
[17] Lu X H, Wang G M, Zhai T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors [J]. Nano Letters, 2012, 12: 1690-1696.
[18] Balacha J, Brunob M M, Cotella N G, et al.Electrostatic self-assembly of hierarchical porous carbon microparticles [J]. Journal of Power Sources, 2012,199: 386-394.
[19] Hu L B, Pasta M, Mantia F L, et al. Stretchable,porous, and conductive energy textiles [J]. Nano Letters, 2010, 10: 708-714.
[20] Jost K, Perez C R, Mcdonough J K, et al. Carbon coated textiles for flexible energy storage [J]. Energy & Environmental Science, 2011, 4: 5060-5067.
[21] Toupin M, Brousse T, B′elanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J]. Chemistry of Materials, 2004,16: 3184-3190.