J Shanghai Jiaotong Univ Sci ›› 2026, Vol. 31 ›› Issue (1): 36-47.doi: 10.1007/s12204-026-2902-4

• Intelligent Robots • Previous Articles     Next Articles

Input Mapping-Based Model Predictive Control with Event-Triggered Adaptive Strategy for Rigid-Soft Hybrid Manipulator

基于输入映射及事件触发自适应策略的刚柔混合机械臂模型预测控制

李国林1,陈通2,何邵颖3,尹德斌4   

  1. 1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; 2. School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai 200240, China; 3. Chinese Aeronautical Radio Electronics Research Institute, Shanghai 200241, China; 4. Intelligent Manufacturing Research Center, Midea Group Co., Ltd., Foshan 528311, Guangdong, China
  2. 1. 华中科技大学 机械科学与工程学院,武汉 430074;2. 上海交通大学 自动化与感知学院,上海 200240;3. 中国航空无线电电子研究所,上海 200241;4. 美的集团智能制造研究院,广东佛山 528311
  • Received:2025-08-26 Revised:2025-10-17 Accepted:2025-11-18 Online:2026-02-28 Published:2026-02-03

Abstract: Uncertain loads of the rigid-soft hybrid manipulator directly affect working configurations, which will alter the system model parameters, and thereby degrade control accuracy and efficiency. This paper introduces an event-triggered adaptive model predictive control strategy, which integrates with a data-driven approach to control hybrid robots with a cable-driven soft component. In the presence of model uncertainty and mismatch, adaptive identification is employed to improve the nominal model within the controller. Meanwhile, an event-triggered scheme is utilized to reduce redundant identification frequency and improve computing efficiency. Furthermore, an online data-driven method, called input mapping, uses the relationship between the historical input and output data to compensate for the minor model error in the controller via linear combination. The optimization problem is efficiently solved by designing the attenuation coefficient in an infinite-domain situation. Comparative simulation and experimental results demonstrate that the proposed method achieves improved accuracy and faster convergence speed.

Key words: rigid-soft hybrid robot, input mapping, event-triggered, adaptive model predictive control, recursive feasibility, stability

摘要: 不确定性负载会直接影响刚柔混合机械臂的工作配置,改变系统模型参数,从而降低其控制精度和效率。介绍了一种带有事件触发自适应策略的模型预测控制,并结合数据驱动方法控制刚柔混合机器人,其中软体部分由电缆驱动。在模型不确定性和匹配失真的情况下,使用自适应辨识方法改进控制器内的名义模型;同时使用事件触发方法以降低冗余的辨识频率,以提高计算效率。此外,使用了一种在线数据驱动方法,即输入映射,利用历史输入和输出数据的关系,并通过线性组合补偿了控制器中的轻微模型误差。在无限时域中,设计了衰减系数以高效解决优化问题。对比仿真和实验结果表明:本文所提方法在精度和收敛速度上都实现了更好的效果。

关键词: 刚柔混合机器人,输入映射,事件触发,自适应模型预测控制,递归可行性,稳定性

CLC Number: