J Shanghai Jiaotong Univ Sci ›› 2023, Vol. 28 ›› Issue (6): 703-716.doi: 10.1007/s12204-022-2487-5
• Computing & Computer Technologies • Previous Articles Next Articles
ZHANG Shengjia(张晟嘉),LIN Tiancheng(林天成),XU Yi*(徐奕)
Accepted:
2021-07-23
Online:
2023-11-28
Published:
2023-12-04
CLC Number:
ZHANG Shengjia(张晟嘉), LIN Tiancheng(林天成), XU Yi(徐奕). Boosting Unsupervised Domain Adaptation with Soft Pseudo-Label and Curriculum Learning[J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 703-716.
[1] | SUN B, FENG J, SAENKO K. Return of frustratinglyeasy domain adaptation [C]//Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, AZ, USA:AAAI, 2016: 2058-2065.[2] TORRALBA A, EFROS A A. Unbiased look atdataset bias [C]//CVPR 2011. Colorado Springs, CO,USA: IEEE, 2011: 1521-1528.[3] ZHU Y C, ZHUANG F Z, WANG J D, et al. Deep subdomain adaptation network for image classification [J].IEEE Transactions on Neural Networks and LearningSystems, 2021, 32(4): 1713-1722.[4] CUI S H, WANG S H, ZHUO J B, et al. Gradually vanishing bridge for adversarial domain adaptation [C]//2020 IEEE/CVF Conference on ComputerVision and Pattern Recognition. Seattle, WA, USA:IEEE, 2020: 12452-12461.[5] ZHANG W C, OUYANG W L, LI W, et al. Collaborative and adversarial network for unsupervised domain adaptation [C]//2018 IEEE/CVF Conference onComputer Vision and Pattern Recognition. Salt LakeCity, UT, USA: IEEE, 2018: 3801-3809.[6] KANG G L, JIANG L, YANG Y, et al. Contrastiveadaptation network for unsupervised domain adaptation [C]//2019 IEEE/CVF Conference on ComputerVision and Pattern Recognition. Long Beach, CA,USA: IEEE, 2019: 4888-4897.[7] LONG M, CAO Z, WANG J, et al. Conditional adversarial domain adaptation [M]//Advances in neuralinformation processing systems 31. Red Hook: CurranAssociates Inc., 2018: 1645-1655.[8] ZHANG Y, LIU T, LONG M, et al. Bridging theory and algorithm for domain adaptation [C]//36thInternational Conference on Machine Learning. LongBeach, CA, USA: PMLR, 2019: 7404-7413.[9] XIAO N, ZHANG L. Dynamic weighted learning for unsupervised domain adaptation [C]//2021IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA: IEEE, 2021:15237-15246.[10] WEI G Q, LAN C L, ZENG W J, et al. MetaAlign: coordinating domain alignment and classification for unsupervised domain adaptation [C]//2021 IEEE/CVFConference on Computer Vision and Pattern Recognition. Nashville, TN, USA: IEEE, 2021: 16638-16648.[11] SHARMA A, KALLURI T, CHANDRAKER M. Instance level affinity-based transfer for unsuperviseddomain adaptation [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville, TN, USA: IEEE, 2021: 5357-5367.[12] ZHONG L, FANG Z, LIU F, et al. How does the combined risk affect the performance of unsupervised domain adaptation approaches? [C]//35th AAAI Conference on Artificial Intelligence. Online: AAAI, 2021: 11079-11087. |
[13] | LI S, XIE M X, GONG K X, et al. Transferable semantic augmentation for domain adaptation [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA: IEEE, 2021: 11511-11520. |
[14] | BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains [J]. Machine Learning, 2010, 79(1/2): 151-175. |
[15] | XU M H, ZHANG J, NI B B, et al. Adversarial domain adaptation with domain mixup [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 6502-6509. |
[16] | ZHANG Y B, DENG B, TANG H, et al. Unsupervised multi-class domain adaptation: Theory, algorithms, and practice [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2775-2792. |
[17] | GENG B, TAO D C, XU C. DAML: domain adaptation metric learning [J]. IEEE Transactions on Image Processing, 2011, 20(10): 2980-2989. |
[18] | LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks [C]//32 nd International Conference on Machine Learning. Lille, France: PMLA, 2015: 97-105. |
[19] | TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: Maximizing for domain invariance [DB/OL]. (2014-12-10). https://arxiv.org/abs/1412.3474. |
[1] | SUN B, FENG J, SAENKO K. Return of frustratinglyeasy domain adaptation [C]//Thirtieth AAAI Conference on Artificial Intelligence. Phoenix, AZ, USA:AAAI, 2016: 2058-2065.[2] TORRALBA A, EFROS A A. Unbiased look atdataset bias [C]//CVPR 2011. Colorado Springs, CO,USA: IEEE, 2011: 1521-1528.[3] ZHU Y C, ZHUANG F Z, WANG J D, et al. Deep subdomain adaptation network for image classification [J].IEEE Transactions on Neural Networks and LearningSystems, 2021, 32(4): 1713-1722.[4] CUI S H, WANG S H, ZHUO J B, et al. Gradually vanishing bridge for adversarial domain adaptation [C]//2020 IEEE/CVF Conference on ComputerVision and Pattern Recognition. Seattle, WA, USA:IEEE, 2020: 12452-12461.[5] ZHANG W C, OUYANG W L, LI W, et al. Collaborative and adversarial network for unsupervised domain adaptation [C]//2018 IEEE/CVF Conference onComputer Vision and Pattern Recognition. Salt LakeCity, UT, USA: IEEE, 2018: 3801-3809.[6] KANG G L, JIANG L, YANG Y, et al. Contrastiveadaptation network for unsupervised domain adaptation [C]//2019 IEEE/CVF Conference on ComputerVision and Pattern Recognition. Long Beach, CA,USA: IEEE, 2019: 4888-4897.[7] LONG M, CAO Z, WANG J, et al. Conditional adversarial domain adaptation [M]//Advances in neuralinformation processing systems 31. Red Hook: CurranAssociates Inc., 2018: 1645-1655.[8] ZHANG Y, LIU T, LONG M, et al. Bridging theory and algorithm for domain adaptation [C]//36thInternational Conference on Machine Learning. LongBeach, CA, USA: PMLR, 2019: 7404-7413.[9] XIAO N, ZHANG L. Dynamic weighted learning for unsupervised domain adaptation [C]//2021IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA: IEEE, 2021:15237-15246.[10] WEI G Q, LAN C L, ZENG W J, et al. MetaAlign: coordinating domain alignment and classification for unsupervised domain adaptation [C]//2021 IEEE/CVFConference on Computer Vision and Pattern Recognition. Nashville, TN, USA: IEEE, 2021: 16638-16648.[11] SHARMA A, KALLURI T, CHANDRAKER M. Instance level affinity-based transfer for unsuperviseddomain adaptation [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville, TN, USA: IEEE, 2021: 5357-5367.[12] ZHONG L, FANG Z, LIU F, et al. How does the combined risk affect the performance of unsupervised domain adaptation approaches? [C]//35th AAAI Conference on Artificial Intelligence. Online: AAAI, 2021: 11079-11087. |
[20] | ZHANG Y B, TANG H, JIA K, et al. Domainsymmetric networks for adversarial domain adaptation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 5026-5035. |
[13] | LI S, XIE M X, GONG K X, et al. Transferable semantic augmentation for domain adaptation [C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA: IEEE, 2021: 11511-11520. |
[21] | PENG X C, BAI Q X, XIA X D, et al. Moment matching for multi-source domain adaptation [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 1406-1415. |
[14] | BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains [J]. Machine Learning, 2010, 79(1/2): 151-175. |
[22] | LI X D, HU Y, ZHENG J H, et al. Central moment discrepancy based domain adaptation for intelligent bearing fault diagnosis [J]. Neurocomputing, 2021, 429: 12- 24. |
[15] | XU M H, ZHANG J, NI B B, et al. Adversarial domain adaptation with domain mixup [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 6502-6509. |
[23] | PENG X C, SAENKO K. Synthetic to real adaptation with generative correlation alignment networks [C]//2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, NV, USA: IEEE, 2018: 1982-1991. |
[16] | ZHANG Y B, DENG B, TANG H, et al. Unsupervised multi-class domain adaptation: Theory, algorithms, and practice [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2775-2792. |
[24] | SUN B C, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation [M]//Computer vision — ECCV 2016 Workshops. Cham: Springer, 2016: 443-450. |
[17] | GENG B, TAO D C, XU C. DAML: domain adaptation metric learning [J]. IEEE Transactions on Image Processing, 2011, 20(10): 2980-2989. |
[25] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139-144. |
[18] | LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks [C]//32 nd International Conference on Machine Learning. Lille, France: PMLA, 2015: 97-105. |
[26] | GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation [C]//32nd International Conference on Machine Learning. Lille, France: PMLR, 2015: 1180-1189. |
[19] | TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: Maximizing for domain invariance [DB/OL]. (2014-12-10). https://arxiv.org/abs/1412.3474. |
[27] | GANIN Y, USTINOVA E, AJAKAN H, et al. Domainadversarial training of neural networks [J]. Journal of Machine Learning Research, 2016, 17(1): 2096-2030. |
[20] | ZHANG Y B, TANG H, JIA K, et al. Domainsymmetric networks for adversarial domain adaptation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 5026-5035. |
[28] | WANG X M, LI L, YE W R, et al. Transferable attention for domain adaptation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 5345-5352. |
[21] | PENG X C, BAI Q X, XIA X D, et al. Moment matching for multi-source domain adaptation [C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 1406-1415. |
[29] | MATSUURA T, HARADA T. Domain generalization using a mixture of multiple latent domains [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11749-11756. |
[22] | LI X D, HU Y, ZHENG J H, et al. Central moment discrepancy based domain adaptation for intelligent bearing fault diagnosis [J]. Neurocomputing, 2021, 429: 12- 24. |
[30] | WEI Y Y, ZHANG Z, WANG Y, et al. DerainCycleGAN: Rain attentive CycleGAN for single image deraining and rainmaking [J]. IEEE Transactions on Image Processing, 2021, 30: 4788-4801. |
[23] | PENG X C, SAENKO K. Synthetic to real adaptation with generative correlation alignment networks [C]//2018 IEEE Winter Conference on Applications of Computer Vision. Lake Tahoe, NV, USA: IEEE, 2018: 1982-1991. |
[31] | GAO R, HOU X S, QIN J, et al. Zero-VAE-GAN: Generating unseen features for generalized and transductive zero-shot learning [J]. IEEE Transactions on Image Processing, 2020, 29: 3665-3680. |
[24] | SUN B C, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation [M]//Computer vision — ECCV 2016 Workshops. Cham: Springer, 2016: 443-450. |
[32] | GAO X J, ZHANG Z, MU T T, et al. Self-attention driven adversarial similarity learning network [J]. Pattern Recognition, 2020, 105: 107331. |
[25] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [J]. Communications of the ACM, 2020, 63(11): 139-144. |
[33] | PEI Z, CAO Z, LONG M, et al. Multi-adversarial domain adaptation [J]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 3211-3218. |
[26] | GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation [C]//32nd International Conference on Machine Learning. Lille, France: PMLR, 2015: 1180-1189. |
[34] | CHEN M H, ZHAO S, LIU H F, et al. Adversariallearned loss for domain adaptation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3521-3528. |
[27] | GANIN Y, USTINOVA E, AJAKAN H, et al. Domainadversarial training of neural networks [J]. Journal of Machine Learning Research, 2016, 17(1): 2096-2030. |
[35] | SAITO K, USHIKU Y, HARADA T. Asymmetric tritraining for unsupervised domain adaptation [C]//34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 2988-2997. |
[28] | WANG X M, LI L, YE W R, et al. Transferable attention for domain adaptation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 5345-5352. |
[36] | XIE S, ZHENG Z, CHEN L, et al. Learning semantic representations for unsupervised domain adaptation [C]//35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018: 5423- 5432. |
[29] | MATSUURA T, HARADA T. Domain generalization using a mixture of multiple latent domains [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11749-11756. |
[37] | CHEN C Q, XIE W P, HUANG W B, et al. Progressive feature alignment for unsupervised domain adaptation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 627-636. |
[30] | WEI Y Y, ZHANG Z, WANG Y, et al. DerainCycleGAN: Rain attentive CycleGAN for single image deraining and rainmaking [J]. IEEE Transactions on Image Processing, 2021, 30: 4788-4801. |
[38] | PAN Y W, YAO T, LI Y H, et al. Transferrable prototypical networks for unsupervised domain adaptation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 2234-2242. |
[31] | GAO R, HOU X S, QIN J, et al. Zero-VAE-GAN: Generating unseen features for generalized and transductive zero-shot learning [J]. IEEE Transactions on Image Processing, 2020, 29: 3665-3680. |
[39] | ZOU Y, YU Z D, VIJAYA KUMAR B V K, et al. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training [M]//Computer vision — ECCV 2018. Cham: Springer, 2018: 297-313. |
[32] | GAO X J, ZHANG Z, MU T T, et al. Self-attention driven adversarial similarity learning network [J]. Pattern Recognition, 2020, 105: 107331. |
[40] | WANG Q, BRECKON T. Unsupervised domain adaptation via structured prediction based selective pseudolabeling [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 6243-6250.41] WANG M, DENG W H. Deep visual domain adaptation: A survey [J]. Neurocomputing, 2018, 312: 135- 153. |
[33] | PEI Z, CAO Z, LONG M, et al. Multi-adversarial domain adaptation [J]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 3211-3218. |
[42] | HINTON G, VINYALS O, DEAN J. Distilling the Knowledge in a Neural Network [DB/OL]. (2015-05- 09). https://arxiv.org/abs/1503.02531. |
[34] | CHEN M H, ZHAO S, LIU H F, et al. Adversariallearned loss for domain adaptation [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3521-3528. |
[43] | CHENG X, RAO Z F, CHEN Y L, et al. Explaining knowledge distillation by quantifying the knowledge [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 12922-12932. |
[35] | SAITO K, USHIKU Y, HARADA T. Asymmetric tritraining for unsupervised domain adaptation [C]//34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 2988-2997. |
[44] | YUAN L, TAY F E, LI G L, et al. Revisiting knowledge distillation via label smoothing regularization [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 3902-3910. |
[36] | XIE S, ZHENG Z, CHEN L, et al. Learning semantic representations for unsupervised domain adaptation [C]//35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018: 5423- 5432. |
[45] | SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains [M]//Computer vision — ECCV 2010. Berlin, Heidelberg: Springer, 2010: 213-226. |
[37] | CHEN C Q, XIE W P, HUANG W B, et al. Progressive feature alignment for unsupervised domain adaptation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 627-636. |
[46] | VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 5385-5394. |
[38] | PAN Y W, YAO T, LI Y H, et al. Transferrable prototypical networks for unsupervised domain adaptation [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA: IEEE, 2019: 2234-2242. |
[47] | ZHU Y C, ZHUANG F Z, WANG J D, et al. Multirepresentation adaptation network for cross-domain image classification [J]. Neural Networks, 2019, 119: 214-221. |
[39] | ZOU Y, YU Z D, VIJAYA KUMAR B V K, et al. Unsupervised domain adaptation for semantic segmentation via class-balanced self-training [M]//Computer vision — ECCV 2018. Cham: Springer, 2018: 297-313. |
[48] | LONG M, ZHU H, WANG J, et al. Deep transfer learning with joint adaptation networks [C]//34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 2208-2217. |
[40] | WANG Q, BRECKON T. Unsupervised domain adaptation via structured prediction based selective pseudolabeling [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 6243-6250.41] WANG M, DENG W H. Deep visual domain adaptation: A survey [J]. Neurocomputing, 2018, 312: 135- 153. |
[49] | BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by Kernel Maximum Mean Discrepancy [J]. Bioinformatics, 2006, 22(14): e49-e57. |
[42] | HINTON G, VINYALS O, DEAN J. Distilling the Knowledge in a Neural Network [DB/OL]. (2015-05- 09). https://arxiv.org/abs/1503.02531. |
[50] | ZELLINGER W, GRUBINGER T, LUGHOFER E, et al. Central moment discrepancy (cmd) for domaininvariant representation learning [C]//International Conference on Learning Representations. Toulon, France: Universite de Montreal, 2017: 234-245. |
[43] | CHENG X, RAO Z F, CHEN Y L, et al. Explaining knowledge distillation by quantifying the knowledge [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 12922-12932. |
[51] | CHEN Q C, LIU Y, WANG Z W, et al. Re-weighted adversarial adaptation network for unsupervised domain adaptation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 7976-7985. |
[44] | YUAN L, TAY F E, LI G L, et al. Revisiting knowledge distillation via label smoothing regularization [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, WA, USA: IEEE, 2020: 3902-3910. |
[52] | SANKARANARAYANAN S, BALAJI Y, CASTILLO C D, et al. Generate to adapt: Aligning domains using generative adversarial networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8503-8512. |
[45] | SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains [M]//Computer vision — ECCV 2010. Berlin, Heidelberg: Springer, 2010: 213-226. |
[53] | VOLPI R, MORERIO P, SAVARESE S, et al. Adversarial feature augmentation for unsupervised domain adaptation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 5495-5504. |
[46] | VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 5385-5394. |
[54] | TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 2962- 2971. |
[47] | ZHU Y C, ZHUANG F Z, WANG J D, et al. Multirepresentation adaptation network for cross-domain image classification [J]. Neural Networks, 2019, 119: 214-221. |
[55] | LIU H, LONG M, WANG J, et al. Transferable adversarial training: A general approach to adapting deep classifiers [C]//36th International Conference on Machine Learning. Long Beach, CA, USA: PMLR, 2019: 4013-4022. |
[48] | LONG M, ZHU H, WANG J, et al. Deep transfer learning with joint adaptation networks [C]//34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 2208-2217. |
[56] | SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 3723-3732. |
[49] | BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by Kernel Maximum Mean Discrepancy [J]. Bioinformatics, 2006, 22(14): e49-e57. |
[57] | LU Z H, YANG Y X, ZHU X T, et al. Stochastic classifiers for unsupervised domain adaptation [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 9108-9117. |
[50] | ZELLINGER W, GRUBINGER T, LUGHOFER E, et al. Central moment discrepancy (cmd) for domaininvariant representation learning [C]//International Conference on Learning Representations. Toulon, France: Universite de Montreal, 2017: 234-245. |
[58] | HOFFMAN J, TZENG E, PARK T, et al. CyCADA: Cycle-consistent adversarial domain adaptation [C]//35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018: 1989- 1998. |
[51] | CHEN Q C, LIU Y, WANG Z W, et al. Re-weighted adversarial adaptation network for unsupervised domain adaptation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 7976-7985. |
[59] | RUSSO P, CARLUCCI F M, TOMMASI T, et al. From source to target and back: Symmetric Bidirectional adaptive GAN [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8099-8108. |
[52] | SANKARANARAYANAN S, BALAJI Y, CASTILLO C D, et al. Generate to adapt: Aligning domains using generative adversarial networks [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8503-8512. |
[60] | BOUSMALIS K, SILBERMAN N, DOHAN D, et al. Unsupervised pixel-level domain adaptation with generative adversarial networks [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 95-104. |
[53] | VOLPI R, MORERIO P, SAVARESE S, et al. Adversarial feature augmentation for unsupervised domain adaptation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 5495-5504. |
[61] | LIU M Y, TUZEL O. Coupled generative adversarial networks [M]//Advances in Neural Information Processing Systems 29. Red Hook: Curran Associates Inc., 2016: 469-477. |
[54] | TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 2962- 2971. |
[62] | KUMAR A, SATTIGERI P, WADHAWAN K, et al. Co-regularized alignment for unsupervised domain adaptation [C]//Advances in Neural Information Processing Systems 31. Red Hook: Curran Associates Inc., 2018: 543-555. |
[55] | LIU H, LONG M, WANG J, et al. Transferable adversarial training: A general approach to adapting deep classifiers [C]//36th International Conference on Machine Learning. Long Beach, CA, USA: PMLR, 2019: 4013-4022. |
[63] | ZHANG Y, DAVID P, GONG B Q. Curriculum domain adaptation for semantic segmentation of urban scenes [C]//2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2039- 2049. |
[56] | SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 3723-3732. |
[64] | CHOI J, JEONG M, KIM T, et al Pseudo-labeling curriculum for unsupervised domain adaptation [DB/OL]. (2019-08-01). https://arxiv.org/abs/1908.00262. |
[57] | LU Z H, YANG Y X, ZHU X T, et al. Stochastic classifiers for unsupervised domain adaptation [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020: 9108-9117. |
[65] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778. |
[58] | HOFFMAN J, TZENG E, PARK T, et al. CyCADA: Cycle-consistent adversarial domain adaptation [C]//35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018: 1989- 1998. |
[66] | CHEN X, WANG S, LONG M, et al. Transferability vs. discriminability: Batch spectral penalizationfor adversarial domain adaptation [C]//36th International Conference on Machine Learning. Long Beach, CA, USA: PMLR, 2019: 1081-1090. |
[59] | RUSSO P, CARLUCCI F M, TOMMASI T, et al. From source to target and back: Symmetric Bidirectional adaptive GAN [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 8099-8108. |
[67] | DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database [C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 248-255. |
[60] | BOUSMALIS K, SILBERMAN N, DOHAN D, et al. Unsupervised pixel-level domain adaptation with generative adversarial networks [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, 2017: 95-104. |
[68] | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |
[61] | LIU M Y, TUZEL O. Coupled generative adversarial networks [M]//Advances in Neural Information Processing Systems 29. Red Hook: Curran Associates Inc., 2016: 469-477. |
[69] | WU S, ZHONG J, CAO W M, et al. Improving domain-specific classification by collaborative learning with adaptation networks [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 5450- 5457. |
[62] | KUMAR A, SATTIGERI P, WADHAWAN K, et al. Co-regularized alignment for unsupervised domain adaptation [C]//Advances in Neural Information Processing Systems 31. Red Hook: Curran Associates Inc., 2018: 543-555. |
[70] | SUN S L, CAO Z H, ZHU H, et al. A survey of optimization methods from a machine learning perspective [J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3668-3681. |
[63] | ZHANG Y, DAVID P, GONG B Q. Curriculum domain adaptation for semantic segmentation of urban scenes [C]//2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2039- 2049. |
[71] | DAUPHIN Y, PASCANU R, GULCEHRE C, et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization [M]//Advances in Neural Information Processing Systems 27. Red Hook: Curran Associates Inc., 2014: 2933-2941. |
[64] | CHOI J, JEONG M, KIM T, et al Pseudo-labeling curriculum for unsupervised domain adaptation [DB/OL]. (2019-08-01). https://arxiv.org/abs/1908.00262. |
[65] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770-778. |
[66] | CHEN X, WANG S, LONG M, et al. Transferability vs. discriminability: Batch spectral penalizationfor adversarial domain adaptation [C]//36th International Conference on Machine Learning. Long Beach, CA, USA: PMLR, 2019: 1081-1090. |
[67] | DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database [C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 248-255. |
[68] | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |
[69] | WU S, ZHONG J, CAO W M, et al. Improving domain-specific classification by collaborative learning with adaptation networks [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 5450- 5457. |
[70] | SUN S L, CAO Z H, ZHU H, et al. A survey of optimization methods from a machine learning perspective [J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3668-3681. |
[71] | DAUPHIN Y, PASCANU R, GULCEHRE C, et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization [M]//Advances in Neural Information Processing Systems 27. Red Hook: Curran Associates Inc., 2014: 2933-2941. |
[1] | CHEN Xiao1,2 (陈潇), ZHANG Rui1,2 (张瑞), TANG Xinyi1,2 (汤心溢), QIAN Juan3∗ (钱娟). Prediction of Pediatric Sepsis Using a Deep Encoding Network with Cross Features [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(1): 131-140. |
[2] | WU Xingl(武星), ZHANG Qingfeng(张庆丰), WANG Jianjia(王健嘉), YAO Junfeng(姚骏峰), Guo Yike.(郭毅可). Multiple Detection Model Fusion Framework for Printed Circuit Board Defect Detection [J]. J Shanghai Jiaotong Univ Sci, 2023, 28(6): 717-727. |
[3] | LU Guannan1 (卢冠男), WANG Mengling1∗ (王梦灵), FOX Tamara2, JIANG Peng3 (蒋 鹏), JIANG Fusong3 (蒋伏松). Novel Indicators for Adverse Glycemic Events Detection Analysis Based on Continuous Glucose Monitoring Neural Network Predictive Models [J]. J Shanghai Jiaotong Univ Sci, 2022, 27(4): 498-504. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||