Journal of Shanghai Jiao Tong University ›› 2025, Vol. 59 ›› Issue (1): 70-78.doi: 10.16183/j.cnki.jsjtu.2023.188
• Naval Architecture, Ocean and Civil Engineering • Previous Articles Next Articles
YANG Yinghe1, WEI Handi1,2(), FAN Dixia3, LI Ang3
Received:
2023-05-11
Revised:
2023-06-14
Accepted:
2023-06-19
Online:
2025-01-28
Published:
2025-02-06
CLC Number:
YANG Yinghe, WEI Handi, FAN Dixia, LI Ang. Optimization Method of Underwater Flapping Foil Propulsion Performance Based on Gaussian Process Regression and Deep Reinforcement Learning[J]. Journal of Shanghai Jiao Tong University, 2025, 59(1): 70-78.
Add to citation manager EndNote|Ris|BibTeX
URL: https://xuebao.sjtu.edu.cn/EN/10.16183/j.cnki.jsjtu.2023.188
Tab.3
GPR model parameters of motion parameters and flapping foil propulsion speed
核函数 | Ls | Nl | On | M | R | P |
---|---|---|---|---|---|---|
Matern 3/2 | 0.000 688 | 71 523 | 16 | 2.128 | 3.108 | 0.864 |
Matern 5/2 | 0.000 562 | 11 281 | 12 | 12.597 | 16.011 | 0.640 |
ARD Matern 3/2 | [2.385 7.976 6.998 4.158] | 39 948 | 1 | 2.128 | 3.108 | 0.864 |
ARD Matern 5/2 | [5.088 1.123 8.345 5.086] | 32 307 | 18 | 12.597 | 16.011 | 0.640 |
Squared exponential | 0.008 38 | 19 108 | 7 | 1.274 | 1.516 | 0.956 |
Absolute exponential | 0.007 72 | 32 667 | 100 | 1.006 | 1.832 | 0.957 |
Tab.4
GPR model parameters of motion parameters and flapping foil propulsion efficiency
核函数 | Ls | Nl | On | M | R | P |
---|---|---|---|---|---|---|
Matern 3/2 | 0.689 | 11 820 | 13 | 0.010 9 | 0.014 6 | -0.645 |
Matern 5/2 | 0.946 | 79 233 | 3 | 0.010 9 | 0.014 7 | -0.621 |
Squared exponential | 0.001 12 | 39 666 | 2 | 0.010 9 | 0.014 6 | 0.250 |
Absolute exponential | 0.043 3 | 46 725 | 5 | 0.010 9 | 0.014 7 | -0.931 |
[1] | MANNAM N, KRISHNANKUTTY P, VIJAYAKUMARAN H, et al. Experimental and numerical study of penguin mode flapping foil propulsion system for ships[J]. Journal of Bionic Engineering, 2017, 14(4): 770-780. |
[2] | WU X, ZHANG X, TIAN X, et al. A review on fluid dynamics of flapping foils[J]. Ocean Engineering, 2020, 195: 106712. |
[3] | ASHRAF M A, YOUNG J, LAI J C A, et al. Oscillation frequency and amplitude effects on plunging airfoil propulsion and flow periodicity[J]. AIAA Journal, 2012, 50(11): 2308-2324. |
[4] | KHALID M, AKHTAR I, IMTIAZ H, et al. On the hydrodynamics and nonlinear interaction between fish in tandem configuration[J]. Ocean Engineering, 2018, 157: 108-120. |
[5] | DAS A, SHUKLA R K, GOVARDHAN R N. Existence of a sharp transition in the peak propulsive efficiency of a low-Re pitching foil[J]. Journal of Fluid Mechanics, 2016, 800: 307-326. |
[6] | MACKOWSKI A W, WILLIAMSON C H K. Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching[J]. Journal of Fluid Mechanics, 2015, 765: 524-543. |
[7] | AMIRALAEI M R, ALIGHANBARI H, HASHEMI S M. An investigation into the effects of unsteady parameters on the aerodynamics of a low Reynolds number pitching airfoil[J]. Journal of Fluids and Structures, 2010, 26(6): 979-993. |
[8] | SCOTT F, HERKE H, DAVID M. Addressing function approximation error in actor-critic methods[C]// Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 2018: 1587-1596. |
[9] | THAKOR M, KUMAR G, DAS D, et al. Investigation of asymmetrically pitching airfoil at high reduced frequency[J]. Physics of Fluids, 2020, 32(5): 053607. |
[10] | CHENG M, JIAO L, YAN P, et al. Prediction of surface residual stress in end milling with Gaussian process regression[J]. Measurement, 2021, 178(11): 109333. |
[11] | GARNIER P, VIQUERAT J, RABAULT J, et al. A review on deep reinforcement learning for fluid mechanics[J]. Computers & Fluids, 2021, 225: 104973. |
[1] | DONG Yubo1 (董玉博), CUI Tao1 (崔涛), ZHOU Yufan1 (周禹帆), SONG Xun2 (宋勋), ZHU Yue2 (祝月), DONG Peng1∗ (董鹏). Reward Function Design Method for Long Episode Pursuit Tasks Under Polar Coordinate in Multi-Agent Reinforcement Learning [J]. J Shanghai Jiaotong Univ Sci, 2024, 29(4): 646-655. |
[2] | ZHU Haoran, CHEN Ziqiang, YANG Deqing. State of Health Estimation of Li-Ion Batteries Based on Differential Thermal Voltammetry and Gaussian Process Regression [J]. Journal of Shanghai Jiao Tong University, 2024, 58(12): 1925-1934. |
[3] | WANG Ziyao, GUO Fengxiang, CHEN Li. Engine Emission Prediction Based on Extrapolated Gaussian Process Regression Method [J]. Journal of Shanghai Jiao Tong University, 2022, 56(5): 604-610. |
[4] | JI Xiukun (冀秀坤), HAI Jintao (海金涛), LUO Wenguang (罗文广), LIN Cuixia (林翠霞), XIONG Yu(熊 禹), OU Zengkai (殴增开), WEN Jiayan(文家燕). Obstacle Avoidance in Multi-Agent Formation Process Based on Deep Reinforcement Learning [J]. J Shanghai Jiaotong Univ Sci, 2021, 26(5): 680-685. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||